Mechanisms of generation of rotational strengths in TEM-1 β-lactamase. Part I: theoretical analysis of the influence of conformational changes in the near-UV

2004 ◽  
Vol 396 (4-6) ◽  
pp. 282-287 ◽  
Author(s):  
Christo Christov ◽  
Tatyana Karabencheva
Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2632 ◽  
Author(s):  
Anna Kusakiewicz-Dawid ◽  
Monika Porada ◽  
Błażej Dziuk ◽  
Dawid Siodłak

A series of disubstituted 1H-pyrazoles with methyl (1), amino (2), and nitro (3) groups, as well as ester (a) or amide (b) groups in positions 3 and 5 was synthesized, and annular tautomerism was investigated using X-ray, theoretical calculations, NMR, and FT-IR methods. The X-ray experiment in the crystal state showed for the compounds with methyl (1a, 1b) and amino (2b) groups the tautomer with ester or amide groups at position 3 (tautomer 3), but for those with a nitro group (3b, 4), tautomer 5. Similar results were obtained in solution by NMR NOE experiments in CDCl3, DMSO-d6, and CD3OD solvents. However, tautomer equilibrium was observed for 2b in DMSO. The FT-IR spectra in chloroform and acetonitrile showed equilibria, which can be ascribed to conformational changes of the cis/trans arrangement of the ester/amide group and pyrazole ring. Theoretical analysis using the M06-2X/6-311++G(d,p) method (in vacuo, chloroform, acetonitrile, and water) and measurement of aromaticity (NICS) showed dependence on internal hydrogen bonds, the influence of the environment, and the effect of the substituent. These factors, pyrazole aromaticity and intra- and inter-molecular interactions, seem to have a considerable influence on the choice of tautomer.


Author(s):  
D. James Morré ◽  
Charles E. Bracker ◽  
William J. VanDerWoude

Calcium ions in the concentration range 5-100 mM inhibit auxin-induced cell elongation and wall extensibility of plant stems. Inhibition of wall extensibility requires that the tissue be living; growth inhibition cannot be explained on the basis of cross-linking of carboxyl groups of cell wall uronides by calcium ions. In this study, ultrastructural evidence was sought for an interaction of calcium ions with some component other than the wall at the cell surface of soybean (Glycine max (L.) Merr.) hypocotyls.


Author(s):  
A. Gómez ◽  
P. Schabes-Retchkiman ◽  
M. José-Yacamán ◽  
T. Ocaña

The splitting effect that is observed in microdiffraction pat-terns of small metallic particles in the size range 50-500 Å can be understood using the dynamical theory of electron diffraction for the case of a crystal containing a finite wedge. For the experimental data we refer to part I of this work in these proceedings.


Author(s):  
Hideo Hayashi ◽  
Yoshikazu Hirai ◽  
John T. Penniston

Spectrin is a membrane associated protein most of which properties have been tentatively elucidated. A main role of the protein has been assumed to give a supporting structure to inside of the membrane. As reported previously, however, the isolated spectrin molecule underwent self assemble to form such as fibrous, meshwork, dispersed or aggregated arrangements depending upon the buffer suspended and was suggested to play an active role in the membrane conformational changes. In this study, the role of spectrin and actin was examined in terms of the molecular arrangements on the erythrocyte membrane surface with correlation to the functional states of the ghosts.Human erythrocyte ghosts were prepared from either freshly drawn or stocked bank blood by the method of Dodge et al with a slight modification as described before. Anti-spectrin antibody was raised against rabbit by injection of purified spectrin and partially purified.


Author(s):  
Burton B. Silver

Sectioned tissue rarely indicates evidence of what is probably a highly dynamic state of activity in mitochondria which have been reported to undergo a variety of movements such as streaming, divisions and coalescence. Recently, mitochondria from the rat anterior pituitary have been fixed in a variety of configurations which suggest that conformational changes were occurring at the moment of fixation. Pinocytotic-like vacuoles which may be taking in or expelling materials from the surrounding cell medium, appear to be forming in some of the mitochondria. In some cases, pores extend into the matrix of the mitochondria. In other forms, the remains of what seems to be pinched off vacuoles are evident in the mitochondrial interior. Dense materials, resembling secretory droplets, appear at the junction of the pores and the cytoplasm. The droplets are similar to the secretory materials commonly identified in electron micrographs of the anterior pituitary.


Author(s):  
Amy M. McGough ◽  
Robert Josephs

The remarkable deformability of the erythrocyte derives in large part from the elastic properties of spectrin, the major component of the membrane skeleton. It is generally accepted that spectrin's elasticity arises from marked conformational changes which include variations in its overall length (1). In this work the structure of spectrin in partially expanded membrane skeletons was studied by electron microscopy to determine the molecular basis for spectrin's elastic properties. Spectrin molecules were analysed with respect to three features: length, conformation, and quaternary structure. The results of these studies lead to a model of how spectrin mediates the elastic deformation of the erythrocyte.Membrane skeletons were isolated from erythrocyte membrane ghosts, negatively stained, and examined by transmission electron microscopy (2). Particle lengths and end-to-end distances were measured from enlarged prints using the computer program MACMEASURE. Spectrin conformation (straightness) was assessed by calculating the particles’ correlation length by iterative approximation (3). Digitised spectrin images were correlation averaged or Fourier filtered to improve their signal-to-noise ratios. Three-dimensional reconstructions were performed using a suite of programs which were based on the filtered back-projection algorithm and executed on a cluster of Microvax 3200 workstations (4).


Author(s):  
M. Boublik ◽  
V. Mandiyan ◽  
J.F. Hainfeld ◽  
J.S. Wall

The aim of this study is to understand the mechanism of 16S rRNA folding into the compact structure of the small 30S subunit of E. coli ribosome. The assembly of the 30S E. coli ribosomal subunit is a sequence of specific interactions of 16S rRNA with 21 ribosomal proteins (S1-S21). Using dedicated high resolution STEM we have monitored structural changes induced in 16S rRNA by the proteins S4, S8, S15 and S20 which are involved in the initial steps of 30S subunit assembly. S4 is the first protein to bind directly and stoichiometrically to 16S rRNA. Direct binding also occurs individually between 16S RNA and S8 and S15. However, binding of S20 requires the presence of S4 and S8. The RNA-protein complexes are prepared by the standard reconstitution procedure, dialyzed against 60 mM KCl, 2 mM Mg(OAc)2, 10 mM-Hepes-KOH pH 7.5 (Buffer A), freeze-dried and observed unstained in dark field at -160°.


Author(s):  
Alan Beckett

Low temperature scanning electron microscopy (LTSEM) has been evaluated with special reference to its application to the study of morphology and development in microorganisms. A number of criteria have been considered and have proved valuable in assessing the standard of results achieved. To further aid our understanding of these results, it has been necessary to compare those obtained by LTSEM with those from more conventional preparatory procedures such as 1) chemical fixation, dehydration and critical point-drying; 2) freeze-drying with or without chemical vapour fixation before hand.The criteria used for assessing LTSEM for the above purposes are as follows: 1)Specimen immobilization and stabilization2)General preservation of external morphology3)General preservation of internal morphology4)Exposure to solvents5)Overall dimensional changes6)Cell surface texture7)Differential conformational changes8)Etching frozen-hydrated material9)Beam damage10)Specimen resolution11)Specimen life


2019 ◽  
Vol 476 (21) ◽  
pp. 3141-3159 ◽  
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Zengfan Wei ◽  
Zhijin Gong ◽  
GuiZhi Li ◽  
...  

Abstract MarR (multiple antibiotic resistance regulator) proteins are a family of transcriptional regulators that is prevalent in Corynebacterium glutamicum. Understanding the physiological and biochemical function of MarR homologs in C. glutamicum has focused on cysteine oxidation-based redox-sensing and substrate metabolism-involving regulators. In this study, we characterized the stress-related ligand-binding functions of the C. glutamicum MarR-type regulator CarR (C. glutamicum antibiotic-responding regulator). We demonstrate that CarR negatively regulates the expression of the carR (ncgl2886)–uspA (ncgl2887) operon and the adjacent, oppositely oriented gene ncgl2885, encoding the hypothetical deacylase DecE. We also show that CarR directly activates transcription of the ncgl2882–ncgl2884 operon, encoding the peptidoglycan synthesis operon (PSO) located upstream of carR in the opposite orientation. The addition of stress-associated ligands such as penicillin and streptomycin induced carR, uspA, decE, and PSO expression in vivo, as well as attenuated binding of CarR to operator DNA in vitro. Importantly, stress response-induced up-regulation of carR, uspA, and PSO gene expression correlated with cell resistance to β-lactam antibiotics and aromatic compounds. Six highly conserved residues in CarR were found to strongly influence its ligand binding and transcriptional regulatory properties. Collectively, the results indicate that the ligand binding of CarR induces its dissociation from the carR–uspA promoter to derepress carR and uspA transcription. Ligand-free CarR also activates PSO expression, which in turn contributes to C. glutamicum stress resistance. The outcomes indicate that the stress response mechanism of CarR in C. glutamicum occurs via ligand-induced conformational changes to the protein, not via cysteine oxidation-based thiol modifications.


2019 ◽  
Vol 476 (21) ◽  
pp. 3227-3240 ◽  
Author(s):  
Shanshan Wang ◽  
Yanxiang Zhao ◽  
Long Yi ◽  
Minghe Shen ◽  
Chao Wang ◽  
...  

Trehalose-6-phosphate (T6P) synthase (Tps1) catalyzes the formation of T6P from UDP-glucose (UDPG) (or GDPG, etc.) and glucose-6-phosphate (G6P), and structural basis of this process has not been well studied. MoTps1 (Magnaporthe oryzae Tps1) plays a critical role in carbon and nitrogen metabolism, but its structural information is unknown. Here we present the crystal structures of MoTps1 apo, binary (with UDPG) and ternary (with UDPG/G6P or UDP/T6P) complexes. MoTps1 consists of two modified Rossmann-fold domains and a catalytic center in-between. Unlike Escherichia coli OtsA (EcOtsA, the Tps1 of E. coli), MoTps1 exists as a mixture of monomer, dimer, and oligomer in solution. Inter-chain salt bridges, which are not fully conserved in EcOtsA, play primary roles in MoTps1 oligomerization. Binding of UDPG by MoTps1 C-terminal domain modifies the substrate pocket of MoTps1. In the MoTps1 ternary complex structure, UDP and T6P, the products of UDPG and G6P, are detected, and substantial conformational rearrangements of N-terminal domain, including structural reshuffling (β3–β4 loop to α0 helix) and movement of a ‘shift region' towards the catalytic centre, are observed. These conformational changes render MoTps1 to a ‘closed' state compared with its ‘open' state in apo or UDPG complex structures. By solving the EcOtsA apo structure, we confirmed that similar ligand binding induced conformational changes also exist in EcOtsA, although no structural reshuffling involved. Based on our research and previous studies, we present a model for the catalytic process of Tps1. Our research provides novel information on MoTps1, Tps1 family, and structure-based antifungal drug design.


Sign in / Sign up

Export Citation Format

Share Document