scholarly journals Study on the Effect of the Nozzle Diameter and Swirl Ratio on the Combustion Process for an Opposed-piston Two-stroke Diesel Engine

2014 ◽  
Vol 61 ◽  
pp. 542-546 ◽  
Author(s):  
Zhenyu Zhang ◽  
Changlu Zhao ◽  
Zhaoyi Xie ◽  
Fujun Zhang ◽  
Zhenfeng Zhao
2009 ◽  
Vol 137 (2) ◽  
pp. 37-49
Author(s):  
Robin VANHAELST ◽  
Werner HENTSCHEL ◽  
Christian MÜLLER ◽  
Jakub CZAJKA

In this paper the systematic development of an optical swirl sensor to measure the swirl ratio in an operating serial turbocharged DI-diesel engine is described. The optical sensor detects the visible light of the combustion, in particular the emission of the sooting flame in a wavelength range from 600 nm up to 1000 nm. The acceptance angle is so small that the soot clouds from every spray can be detected as they are being turned under the optical sensor by the swirling flow. In a first part the new optical probe method was validated on a transparent engine by comparison with high speed video recordings. In the second part several hardware variations were made on a serial DI-diesel engine which was equipped with a variable swirl valve. The influence of the opened- and closed swirl valve constellation and the piston geometry on the swirl ratio was measured with the optical probe technique. The results were compared with a zero dimensional simulation model. There was a good agreement between the swirl measurements and the 0D-model. The optical swirl sensor has proven to be a powerful tool to optimise the combustion process. Without any modifications on the cylinder head, the effect of application parameters and hardware parts on the swirl strength can be quantified for all engine loads and speeds.


2010 ◽  
Vol 143 (4) ◽  
pp. 45-59
Author(s):  
Robin VANHAELST ◽  
Jakub CZAJKA

In this paper the systematic development of an optical swirl sensor to measure the swirl ratio in an operating serial turbocharged DI-diesel engine is described. The optical sensor detects the visible light of the combustion, in particular the emission of the sooting flame in a wavelength range from 600 nm up to 1000 nm. The acceptance angle is so small that the soot clouds from every spray can be detected as they are beeing turned under the optical sensor by the swirling flow. In a first part the new optical probe method was validated on a transparent engine by comparison with high speed video recordings. In the second part several hardware variations were made on a serial DI-diesel engine which was equipped with a variable swirl valve. The influence of the opened- and closed swirl valve constellation, the piston geometry and the injector influence on the swirl ratio was measured with the optical probe technique. The results were compared with a zero dimensional simulation model. There was a good agreement between the swirl measurements and the 0D-model. The optical swirl sensor has proven to be a powerful tool to optimise the combustion process. Without any modifications on the cylinder head, the effect of application parameters and hardware parts on the swirl strength can be quantified for all engine loads and speeds.


Author(s):  
Jagdish Nargunde ◽  
Chandrasekharan Jayakumar ◽  
Anubhav Sinha ◽  
Naeim A. Henein ◽  
Walter Bryzik ◽  
...  

An investigation was conducted on a 0.42 liter single cylinder diesel engine equipped with a common rail fuel injection system to evaluate the influence of the swirl motion on JP-8 fuel combustion. Engine tests were performed under steady state conditions of 5 bar IMEP and 1500 RPM. Two different swirl ratios of 1.44 and 7.12 were applied at injection pressures ranging from 400 to 1200 bar. The apparent rate of heat release (ARHR) curve is analyzed to determine the effect of swirl on combustible mixture formation, auto-ignition, premixed and diffusion controlled combustion fractions. An attempt is made to correlate between the swirl ratio and different combustion and emissions parameters at different injection pressures. The emissions included the gaseous fractions and particulates. Two types of particulate matter were measured: Accumulation mode particles (AMPs) and Nucleation mode particles (NMPs). The results indicate that ignition delay duration of JP-8 increases as the swirl ratio increases influencing the overall combustion process and engine out emissions.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2941
Author(s):  
Wojciech Tutak ◽  
Arkadiusz Jamrozik ◽  
Karol Grab-Rogaliński

The main objective of this study was assessment of the performance, emissions and combustion characteristics of a diesel engine using RME–1-butanol blends. In assessing the combustion process, great importance was placed on evaluating the stability of this process. Not only were the typical COVIMEP indicators assessed, but also the non-burnability of the characteristic combustion stages: ignition delay, time of 50% heat release and the end of combustion. The evaluation of the combustion process based on the analysis of heat release. The tests carried out on a 1-cylinder diesel engine operating at a constant load. Research and evaluation of the combustion process of a mixture of RME and 1-butanol carried out for the entire range of shares of both fuels up to 90% of 1-butanol energetic fraction. The participation of butanol in combustion process with RME increased the in-cylinder peak pressure and the heat release rate. With the increase in the share of butanol there was noted a decrease in specific energy consumption and an increase in engine efficiency. The share of butanol improved the combustion stability. There was also an increase in NOx emissions and decrease in CO and soot emissions. The engine can be power by blend up to 80% energy share of butanol.


2000 ◽  
Author(s):  
Francisco Payri ◽  
Jean Arrègle ◽  
Carlos Fenollosa ◽  
Gérard Belot ◽  
Alain Delage ◽  
...  

2002 ◽  
Vol 3 (2) ◽  
pp. 93-101 ◽  
Author(s):  
F E Corcione ◽  
S S Merola ◽  
B M Vaglieco

In the last few years, there has been an increasing concern about the emissions of ultrafine particles in the atmosphere. A detailed study of the formation and oxidation of these particles in the environment of the diesel engine cylinder presents many experimental difficulties due to the high temperatures, pressures and extremely reactive intermediate species. To allow investigation of the different phases of the diesel combustion process, high temporal and spatial resolution optical techniques were applied in the optically accessible chamber of a diesel engine at fixed engine speed and air-fuel ratio. Simultaneous extinction, scattering and flame chemiluminescence measurements from the ultraviolet to the visible region were carried out in order to study the diesel combustion process from the soot inception to the formation of soot particles, through the growth of their precursors. These species were characterized as carbonaceous nanometric structures and their sizes were evaluated by the Mie theory.


Author(s):  
Raouf Mobasheri ◽  
Zhijun Peng

High-Speed Direct Injection (HSDI) diesel engines are increasingly used in automotive applications due to superior fuel economy. An advanced CFD simulation has been carried out to analyze the effect of injection timing on combustion process and emission characteristics in a four valves 2.0L Ford diesel engine. The calculation was performed from intake valve closing (IVC) to exhaust valve opening (EVO) at constant speed of 1600 rpm. Since the work was concentrated on the spray injection, mixture formation and combustion process, only a 60° sector mesh was employed for the calculations. For combustion modeling, an improved version of the Coherent Flame Model (ECFM-3Z) has been applied accompanied with advanced models for emission modeling. The results of simulation were compared against experimental data. Good agreement of calculated and measured in-cylinder pressure trace and pollutant formation trends were observed for all investigated operating points. In addition, the results showed that the current CFD model can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.


Sign in / Sign up

Export Citation Format

Share Document