On the influence of local and zonal hydraulic balancing of heating system on energy savings in existing buildings – Long term experimental research

2018 ◽  
Vol 179 ◽  
pp. 156-164 ◽  
Author(s):  
Tomasz Cholewa ◽  
Igor Balen ◽  
Alicja Siuta-Olcha
Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4918 ◽  
Author(s):  
Sanguk Park ◽  
Sangmin Park ◽  
Myeong-in Choi ◽  
Sanghoon Lee ◽  
Tacklim Lee ◽  
...  

Currently, many intelligent building energy management systems (BEMSs) are emerging for saving energy in new and existing buildings and realizing a sustainable society worldwide. However, installing an intelligent BEMS in existing buildings does not realize an innovative and advanced society because it only involves simple equipment replacement (i.e., replacement of old equipment or LED (Light Emitting Diode) lamps) and energy savings based on a stand-alone system. Therefore, artificial intelligence (AI) is applied to a BEMS to implement intelligent energy optimization based on the latest ICT (Information and Communications Technologies) technology. AI can analyze energy usage data, predict future energy requirements, and establish an appropriate energy saving policy. In this paper, we present a dynamic heating, ventilation, and air conditioning (HVAC) scheduling method that collects, analyzes, and infers energy usage data to intelligently save energy in buildings based on reinforcement learning (RL). In this regard, a hotel is used as the testbed in this study. The proposed method collects, analyzes, and infers IoT data from a building to provide an energy saving policy to realize a futuristic HVAC (heating system) system based on RL. Through this process, a purpose-oriented energy saving methodology to achieve energy saving goals is proposed.


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 275
Author(s):  
Ahmed J. Hamad

One essential utilization of phase change materials as energy storage materials is energy saving and temperature control in air conditioning and indirect solar air drying systems. This study presents an experimental investigation evaluating the characteristics and energy savings of multiple phase change materials subjected to internal flow in an air heating system during charging and discharging cycles. The experimental tests were conducted using a test rig consisting of two main parts, an air supply duct and a room model equipped with phase change materials (PCMs) placed in rectangular aluminum panels. Analysis of the results was based on three test cases: PCM1 (Paraffin wax) placed in the air duct was used alone in the first case; PCM2 (RT–42) placed in the room model was used alone in the second case; and in the third case, the two PCMs (PCM1 and PCM2) were used at the same time. The results revealed a significant improvement in the energy savings and room model temperature control for the air heating system incorporated with multiple PCMs compared with that of a single PCM. Complete melting during the charging cycle occurred at temperatures in the range of 57–60 °C for PCM1 and 38–43 °C for PCM2, respectively, thereby validating the reported PCMs’ melting–solidification results. Multiple PCMs maintained the room air temperature at the desired range of 35–45.2 °C in the air heating applications by minimizing the air temperature fluctuations. The augmentation in discharging time and improvement in the room model temperature using multiple PCMs were about 28.4% higher than those without the use of PCMs. The total energy saving using two PCMs was higher by about 29.5% and 46.7% compared with the use of PCM1 and PCM2, respectively. It can be concluded that multiple PCMs have revealed higher energy savings and thermal stability for the air heating system considered in the current study.


2021 ◽  
Vol 11 (14) ◽  
pp. 6254
Author(s):  
Elena G. Dascalaki ◽  
Constantinos A. Balaras

In an effort to reduce the operational cost of their dwellings, occupants may even have to sacrifice their indoor thermal comfort conditions. Following the economic recession in Greece over recent years, homeowners have been forced to adapt their practices by shortening heating hours, lowering the indoor thermostat settings, isolating spaces that are not heated or even turning off their central heating system and using alternative local heating systems. This paper presents the results from over 100 occupant surveys using questionnaires and walk-through energy audits in Hellenic households that documented how occupants operated the heating systems in their dwellings and the resulting indoor thermal comfort conditions and actual energy use. The results indicate that the perceived winter thermal comfort conditions were satisfactory in only half of the dwellings, since the actual operating space heating periods averaged only 5 h (compared with the assumed 18 h in standard conditions), while less than half heated their entire dwellings and only a fifth maintained an indoor setpoint temperature of 20 °C, corresponding to standard comfort conditions. Mainstream energy conservation measures include system maintenance, switching to more efficient systems, reducing heat losses and installing controls. This information is then used to derive empirical adaptation factors for bridging the gap between the calculated and actual energy use, making more realistic estimates of the expected energy savings following building renovations, setting prudent targets for energy efficiency and developing effective plans toward a decarbonized building stock.


2012 ◽  
Vol 512-515 ◽  
pp. 2863-2866
Author(s):  
Hong Bing Chen ◽  
Ping Wei

Aiming at the current unreasonable heat charge policy, this paper describes the necessity of consumption-based heat bill system, introduces the basic ideas and problems of household heat metering and central control on total heat supply, and analyzes the relationship of household heat metering and central control. The study shows these two aspects should be well coordinated wit[h each other for better energy savings.


2018 ◽  
Vol 42 ◽  
pp. 01003
Author(s):  
Sentagi Sesotya Utami ◽  
Faridah ◽  
Na’im A. Azizi ◽  
Erlin Kencanawati ◽  
M. Akbar Tanjung ◽  
...  

Current studies conducted by JICA, AMPRI and IFC-World Bank, reported that large commercial buildings in Indonesia are not energy and water efficient. One of the cause is the lack of regulation. Meanwhile, effective regulations to reduce energy and water consumption are the concern mostly in a new building to obtain a building permit. This strategy is understandable as retrofitting existing buildings are often more difficult to be implemented, and enforcement is still a major issue in Indonesia. Local governments are currently working on streamlining building permit process as well as developing an online monitoring system for existing buildings. By applying a Building Energy Management System (BEMS) enables to reduce energy consumption up to 15%. An energy monitoring system was designed and installed through this research for Department of Nuclear Engineering and Engineering Physics (DNEEP) building, Faculty of Engineering, Universitas Gadjah Mada. It is a 20 years old two-story building used for educational activities, which consist of classrooms, laboratories, offices and storage spaces. An audit energy was done recently in 2015 where an energy consumption of 261.299,636 kWh/year.m2 was reported. In the existing condition, a power meter is inaccessible and therefore, the only feedback of occupancy behavior in the energy consumption is through the electricity bill. The previous study has shown that building occupants would behave more efficiently if the amount of energy used is notified, and the amount of energy savings are recorded. However, these energy monitoring systems are considered expensive and uniquely tailored for every building. This research aims to design and install a cost effective BEMS based on occupant’s satisfactory assessment of the lighting, acoustics, and air conditioning quality. The data will be used as a decision supporting system (DSS) by building management through the use of a GUI. The design of the interface was based on a survey result from the prospective users. Installed energy monitoring system uses a current sensor with an accuracy of 98% and a precision of 0.04 A while the voltage sensor with an accuracy of 98% and a precision of 0.58 V. The performance testing shows that the number of web clients influences delay of data transmission. The result of the survey shows that GUI is categorized as fair in design without a significant difference between the perceptions of users with and without survey supervision.


2021 ◽  
Author(s):  
Christopher L. K. Wang

As sleep is unconscious, the traditional definition of thermal comfort with conscious judgment does not apply. In this thesis sleep thermal comfort is defined as the thermal condition which enables sleep to most efficiently rejuvenate the body and mind. A comfort model was developed to stimulate the respective thermal environment required to achieve the desired body thermal conditions and a new infrared sphere method was developed to measure mean radiant temperature. Existing heating conditions according to building code conditions during sleeping hours was calculated to likely overheat a sleeping person and allowed energy saving potential by reducing nighttime heating set points. Experimenting with existing radiantly and forced air heated residential buildings, it was confirmed that thermal environment was too hot for comfortable sleep and that the infrared sphere method shows promise. With the site data, potential energy savings were calculated and around 10% of energy consumption reduction may be achieved during peak heating.


The main objective of this study is to conduct an Energy Auditing of The University of Jordan Hospital. This hospital is quite known, as one of Jordan’s leading hospitals in human resources and equipment; however, the energy consumption of the hospital over the past few years has proven to be highly expensive. This makes the saving on costs of energy consumption a high priority that cannot be ignored. Energy audit covers the three main sections of the hospital: the Emergency Building, the Clinics Building and the Main Hospital Building. The consumption of energy, which costs the hospital a total of 2,778,426 JD/yr., can be categorized into three main parts, the lighting system, the diesel fuel consumption, and the consumption of water. After analyzing the energy invoices, and visiting the site for inspection, a list of recommended solutions that are applicable to cut down the total energy bill were derived. The implementation of renewable energy was suggested and studied of which a solar water heating system was proposed. A study on photovoltaic cells technology was performed for a sample of guest's rooms, the number of panels needed was found. After that, a feasibility study was conducted. The initial costs, annual savings and payback periods of the suggested system were estimated by the current market prices. It is found that the energy auditing and the solutions would be very beneficial as it will save a total annual value of 346,853 JDs (12.5% of the current energy bill).


Author(s):  
Frank J. Agraz ◽  
John Maneri

The continual rising cost of energy, existing outdated lighting technology, and inefficient lighting designs have given property owners the opportunity to improve their facilities by retrofitting their existing luminaires with an energy efficient lighting system. A lighting retrofit uses the existing electrical infrastructure to replace, relocate, or convert existing luminaires with the latest generation of cost-effective components. New lighting technology has emerged within the last 6 years that generates energy savings of 40% to 50% while maintaining existing light levels. These upgraded and field-tested solutions lower energy consumption, generate a healthy financial return on investment, and can improve both the quality and quantity of light in the task area. As with any other solution, a cost-effective lighting system must be designed and engineered carefully to accommodate the needs of each work space. Simply installing a new lamp into an existing luminaire will not necessarily guarantee substantial energy savings or an improved lighting environment. In any space that uses electric lighting, the lighting designer must evaluate potential solutions for energy consumption, maintenance concerns, delivered light levels, hostile environments, and the overall economic impact of installing and long-term operation of the new system. In this paper, the author will discuss energy efficient lighting design criteria and how a lighting designer properly engineers a retrofit project to deliver energy savings without sacrificing light levels. The discussion includes a summary of both traditional and emerging technologies, and the long-term impact on energy consumption, maintenance, return on investment, lighting quality, and delivered light levels. Paper published with permission.


2017 ◽  
Vol 13 (1) ◽  
pp. 42-51 ◽  
Author(s):  
Daniela Štaffenová ◽  
Ján Rybárik ◽  
Miroslav Jakubčík

AbstractThe aim of experimental research in the area of exterior walls and windows suitable for wooden buildings was to build special pavilion laboratories. These laboratories are ideally isolated from the surrounding environment, airtight and controlled by the constant internal climate. The principle of experimental research is measuring and recording of required physical parameters (e.g. temperature or relative humidity). This is done in layers of experimental fragment sections in the direction from exterior to interior, as well as in critical places by stable interior and real exterior climatic conditions. The outputs are evaluations of experimental structures behaviour during the specified time period, possibly during the whole year by stable interior and real exterior boundary conditions. The main aim of this experimental research is processing of long-term measurements of experimental structures and the subsequent analysis. The next part of the research consists of collecting measurements obtained with assistance of the experimental detached weather station, analysis, evaluation for later setting up of reference data set for the research locality, from the point of view of its comparison to the data sets from Slovak Hydrometeorological Institute (SHMU) and to localities with similar climate conditions. Later on, the data sets could lead to recommendations for design of wooden buildings.


Sign in / Sign up

Export Citation Format

Share Document