scholarly journals Engineered biomimetic platelet membrane-coated nanoparticles block staphylococcus aureus cytotoxicity and protect against lethal systemic infection

Engineering ◽  
2020 ◽  
Author(s):  
Jwa-Kyung Kim ◽  
Satoshi Uchiyama ◽  
Hua Gong ◽  
Alexandra Stream ◽  
Liangfang Zhang ◽  
...  
2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
H Yang ◽  
Y Song ◽  
Z Huang ◽  
J Qian ◽  
Z Pang ◽  
...  

Abstract Background Aortic valve disease is the most common valvular heart disease leading to valve replacement. The efficacy of pharmacological therapy for aortic valve disease is limited by the high mechanical stress at the aortic valves impairing the binding rate. We aimed to identify nanoparticle coating with entire platelet membranes to fully mimic their inherent multiple adhesion mechanisms and target the sclerotic aortic valve of apolipoprotein E-deficient (ApoE−/−) mice based on their multiple sites binding capacity under high shear stress. Methods Considering the potent interaction of platelet membrane glycoproteins with components present in sclerotic aortic valves, platelet membrane-coated nanoparticles (PNPs) were synthetized and the binding capacity under high shear stress was evaluated in vitro and in vivo. Results Compared with PNPs bound intensity in the static station, 161%, 59%, and 39% of attached PNPs remained adherent on VWF-, collagen-, and fibrin-coated surfaces under shear stress of 25dyn/cm2 respectively. PNPs demonstrated effectively adhering to von Willebrand factor, collagen and fibrin under shear stresses in vitro. In an aortic valve disease model established in ApoE−/− mice, PNPs group exhibited significant increase of accumulation in the aortic valves compared with PBS and control NP group. PNPs displayed high degrees of proximity or co-localization with vWF, collagen and fibrin, which exhibited good targeting to sclerotic aortic valves by mimicking platelet multiple adhesive mechanisms. Conclusion PNPs could provide a promising platform for the molecular diagnosis and targeting treatment of aortic valve disease. Targeting combination Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): National Natural Science Foundation of China


2015 ◽  
Vol 83 (9) ◽  
pp. 3445-3457 ◽  
Author(s):  
Kate M. O'Keeffe ◽  
Mieszko M. Wilk ◽  
John M. Leech ◽  
Alison G. Murphy ◽  
Maisem Laabei ◽  
...  

The capacity for intracellular survival within phagocytes is likely a critical factor facilitating the dissemination ofStaphylococcus aureusin the host. To date, the majority of work onS. aureus-phagocyte interactions has focused on neutrophils and, to a lesser extent, macrophages, yet we understand little about the role played by dendritic cells (DCs) in the direct killing of this bacterium. Using bone marrow-derived DCs (BMDCs), we demonstrate for the first time that DCs can effectively killS. aureusbut that certain strains ofS. aureushave the capacity to evade DC (and macrophage) killing by manipulation of autophagic pathways. Strains with high levels of Agr activity were capable of causing autophagosome accumulation, were not killed by BMDCs, and subsequently escaped from the phagocyte, exerting significant cytotoxic effects. Conversely, strains that exhibited low levels of Agr activity failed to accumulate autophagosomes and were killed by BMDCs. Inhibition of the autophagic pathway by treatment with 3-methyladenine restored the bactericidal effects of BMDCs. Using anin vivomodel of systemic infection, we demonstrated that the ability ofS. aureusstrains to evade phagocytic cell killing and to survive temporarily within phagocytes correlated with persistence in the periphery and that this effect is critically Agr dependent. Taken together, our data suggest that strains ofS. aureusexhibiting high levels of Agr activity are capable of blocking autophagic flux, leading to the accumulation of autophagosomes. Within these autophagosomes, the bacteria are protected from phagocytic killing, thus providing an intracellular survival niche within professional phagocytes, which ultimately facilitates dissemination.


2021 ◽  
Vol 12 ◽  
Author(s):  
Emilio G. Vozza ◽  
Michelle E. Mulcahy ◽  
Rachel M. McLoughlin

The success of Staphylococcus aureus as a human commensal and an opportunistic pathogen relies on its ability to adapt to several niches within the host. The innate immune response plays a key role in protecting the host against S. aureus infection; however, S. aureus adeptness at evading the innate immune system is indisputably evident. The “Trojan horse” theory has been postulated to describe a mechanism by which S. aureus takes advantage of phagocytes as a survival niche within the host to facilitate dissemination of S. aureus to secondary sites during systemic infection. Several studies have determined that S. aureus can parasitize both professional and non-professional phagocytes by manipulating the host autophagy pathway in order to create an intracellular survival niche. Neutrophils represent a critical cell type in S. aureus infection as demonstrated by the increased risk of infection among patients with congenital neutrophil disorders. However, S. aureus has been repeatedly shown to survive intracellularly within neutrophils with evidence now supporting a pathogenic role of host autophagy. By manipulating this pathway, S. aureus can also alter the apoptotic fate of the neutrophil and potentially skew other important signalling pathways for its own gain. Understanding these critical host-pathogen interactions could lead to the development of new host directed therapeutics for the treatment of S. aureus infection by removing its intracellular niche and restoring host bactericidal functions. This review discusses the current findings surrounding intracellular survival of S. aureus within neutrophils, the pathogenic role autophagy plays in this process and considers the therapeutic potential for targeting this immune evasion mechanism.


2020 ◽  
Vol 1 (1) ◽  
pp. 2000018
Author(s):  
Shuyan Wang ◽  
Yaou Duan ◽  
Qiangzhe Zhang ◽  
Anvita Komarla ◽  
Hua Gong ◽  
...  

2020 ◽  
Vol 8 (21) ◽  
pp. 4648-4659 ◽  
Author(s):  
Long Wu ◽  
Wei Xie ◽  
Hui-Ming Zan ◽  
Zhongzhong Liu ◽  
Ganggang Wang ◽  
...  

Specific targeted drug delivery and controllable release of drugs at tumor regions are two of the main challenges for hepatocellular carcinoma (HCC) therapy, particularly post metastasis.


2021 ◽  
Author(s):  
Yi Zhao ◽  
Ruosen Xie ◽  
Nisakorn Yodsanit ◽  
Mingzhou Ye ◽  
Yuyuan Wang ◽  
...  

A schematic diagram of the PNPArg as a thrombus-targeting antithrombotic agent.


Sign in / Sign up

Export Citation Format

Share Document