scholarly journals Tuning mechanical properties of seaweeds for hard capsules: A step forward for a sustainable drug delivery medium

2021 ◽  
Vol 1 ◽  
pp. 100023
Author(s):  
Mohd Aiman Hamdan ◽  
Mohd Amin Khairatun Najwa ◽  
Rajan Jose ◽  
Darren Martin ◽  
Fatmawati Adam
2018 ◽  
Vol 24 (8) ◽  
pp. 843-854 ◽  
Author(s):  
Weiguo Xu ◽  
Shujun Dong ◽  
Yuping Han ◽  
Shuqiang Li ◽  
Yang Liu

Hydrogels, as a class of materials for tissue engineering and drug delivery, have high water content and solid-like mechanical properties. Currently, hydrogels with an antibacterial function are a research hotspot in biomedical field. Many advanced antibacterial hydrogels have been developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs and structural diversity. In this article, an overview is provided on the preparation and applications of various antibacterial hydrogels. Furthermore, the prospects in biomedical researches and clinical applications are predicted.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mary Beth Wandel ◽  
Craig A. Bell ◽  
Jiayi Yu ◽  
Maria C. Arno ◽  
Nathan Z. Dreger ◽  
...  

AbstractComplex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical, and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery.


Soft Matter ◽  
2021 ◽  
Author(s):  
Chiara Raffaelli ◽  
Wouter G Ellenbroek

Hydrogels are a staple of biomaterials development. Optimizing their use in e.g. drug delivery or tissue engineering requires a solid understanding of how to adjust their mechanical properties. Here, we...


2022 ◽  
Vol 23 (2) ◽  
pp. 610
Author(s):  
Teresa Aditya ◽  
Jean Paul Allain ◽  
Camilo Jaramillo ◽  
Andrea Mesa Restrepo

Bacterial cellulose is a naturally occurring polysaccharide with numerous biomedical applications that range from drug delivery platforms to tissue engineering strategies. BC possesses remarkable biocompatibility, microstructure, and mechanical properties that resemble native human tissues, making it suitable for the replacement of damaged or injured tissues. In this review, we will discuss the structure and mechanical properties of the BC and summarize the techniques used to characterize these properties. We will also discuss the functionalization of BC to yield nanocomposites and the surface modification of BC by plasma and irradiation-based methods to fabricate materials with improved functionalities such as bactericidal capabilities.


2019 ◽  
Vol 1 (3) ◽  
pp. 198-204
Author(s):  
Yasumasa Takao ◽  
Naoaki Toyoda ◽  
Tsuyoshi Asai ◽  
Toshihiko Okadera ◽  
Hiroyuki Asano

Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 271 ◽  
Author(s):  
Hyeongmin Kim ◽  
Chung-Lyol Lee ◽  
Seohyun Lee ◽  
Tae Jin Lee ◽  
Iqra Haleem ◽  
...  

In this study, we aimed to design a highly swellable and mechanically robust matrix tablet (SMT) as a gastroretentive drug-delivery system (GRDDS) capable of improving the dissolution behavior of β-lapachone with low aqueous solubility. For the preparation of SMTs, the cogrinding technique and freeze–thaw method were used to disperse β-lapachone in SMTs in an amorphous state and to enhance the swelling and mechanical properties of SMTs, respectively. As a result, the crystallinity of coground β-lapachone incorporated in the SMTs was found to be considerably decreased; thereby, the dissolution rates of the drug in a simulated gastric fluid could be substantially increased. The SMTs of β-lapachone also demonstrated significantly enhanced swelling and mechanical properties compared to those of a marketed product. The reason for this might be because the physically crosslinked polymeric networks with a porous structure that were formed in SMTs through the freeze–thaw method. In addition, β-lapachone was gradually released from the SMTs in 6 h. Therefore, SMTs of β-lapachone developed in this study could be used as GRDDS with appropriate swelling and mechanical properties for improving the dissolution behavior of hydrophobic drugs such as β-lapachone.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1803
Author(s):  
Vivek Puri ◽  
Ameya Sharma ◽  
Pradeep Kumar ◽  
Inderbir Singh

Biopolymers are extensively used for developing drug delivery systems as they are easily available, economical, readily modified, nontoxic, biodegradable and biocompatible. Thiolation is a well reported approach for enhancing mucoadhesive and mechanical properties of polymers. In the present review article, for the modification of biopolymers different thiolation methods and evaluation/characterization techniques have been discussed in detail. Reported literature on thiolated biopolymers with enhanced mechanical and mucoadhesive properties has been presented conspicuously in text as well as in tabular form. Patents filed by researchers on thiolated polymers have also been presented. In conclusion, thiolation is an easily reproducible and efficient method for customization of mucoadhesive and mechanical properties of biopolymers for drug delivery applications.


Sign in / Sign up

Export Citation Format

Share Document