Density Modeling of High-Pressure Mixtures using Cubic and Non-Cubic EoS and an Excess Volume Method

2021 ◽  
Vol 532 ◽  
pp. 112884
Author(s):  
Wei Yan ◽  
Teresa Regueira ◽  
Yiqun Liu ◽  
Erling H. Stenby
Author(s):  
Muhammad Naqib Nashrudin ◽  
Mohamad Aizat Abas ◽  
Mohd Z. Abdullah ◽  
M. Yusuf Tura Ali ◽  
Zambri Samsudin

Abstract The conventional capillary underfill process has been a common practice in the industry, somehow the process is costly and time consuming. Thus, no-flow underfill process is developed to increase the effective lead time production since it integrates the simultaneous reflow and cure of the solder interconnect and underfill. This paper investigates the effect of different dispense patterns of no-flow underfill process by mean of numerical and experimental method. Finite volume method (FVM) was used for the three-dimensional simulation to simulate the compression flow of the no-flow underfill. Experiments were carried out to complement the simulation validity and the results from both studies have reached a good agreement. The findings show that of all three types of dispense patterns, the combined shape dispense pattern shows better chip filling capability. The dot pattern has the highest velocity and pressure distribution with values of 0.0172 m/s and 813 Pa, respectively. The high-pressure region is concentrated at the center of the chip and decreases out towards the edge. Low in pressure and velocity flow factor somehow lead to issue associated to possibility of incomplete filling or void formation. Dot dispense pattern shows less void formation since it produces high pressure underfill flow within the BGA. This paper provides reliable insight to the industry to choose the best dispense pattern of recently favorable no-flow underfill process.


2002 ◽  
Vol 199 (1-2) ◽  
pp. 249-263 ◽  
Author(s):  
A. Baylaucq ◽  
M.J.P. Comuñas ◽  
C. Boned ◽  
A. Allal ◽  
J. Fernández

SPE Journal ◽  
2016 ◽  
Vol 21 (05) ◽  
pp. 1705-1720 ◽  
Author(s):  
Hossein Nourozieh ◽  
Mohammad Kariznovi ◽  
Jalal Abedi

Summary The viscosity of bitumen and heavy oil is extremely high at both reservoir and surface conditions, on the order of 1 million cp. Therefore, viscosity reduction is necessary for production from the reservoir, pipeline transportation, and oil processing. The aim of this study is to evaluate the effect of different parameters (temperature, pressure, and solvent-weight fraction) on the density and viscosity of bitumen-containing mixtures. Thus, the density and viscosity of mixtures are measured for a sample of Athabasca bitumen diluted with different fractions of toluene at pressures from 0.1 to 10 MPa and at temperatures from 22 to 190 °C. The mixture densities show a linear decrease with temperature, pressure, and solvent concentration. The viscosity of the mixtures indicates a curvilinear trend with respect to the solvent-weight fraction and temperature. The effect of pressure on the mixture viscosity is more pronounced at lower-solvent-weight fractions. The mixture-density data are evaluated with two different methods: no volume change upon mixing and excess volume. The excess-volume method predicts the mixture-density data with an overall average absolute relative deviation (AARD) of 0.34%. The viscosity data for mixtures are compared with different models: Arrhenius (1987), Cragoe (1933), Shu (1984), Lobe (1973), double-log (Yarranton et al. 2013), Lederer (1933), power-law (Kendall and Monroe 1917), and Bij (Yarranton et al. 2013). The Bij model (Yarranton et al. 2013) produces the most-reliable results for mixture viscosities, with 5.5% AARD.


2014 ◽  
Vol 68 ◽  
pp. 189-195 ◽  
Author(s):  
Bernd Oberdorfer ◽  
Daria Setman ◽  
Eva-Maria Steyskal ◽  
Anton Hohenwarter ◽  
Wolfgang Sprengel ◽  
...  

2019 ◽  
Vol 257 ◽  
pp. 01002
Author(s):  
Hailong Wu ◽  
Wansheng Nie ◽  
Zhi Zheng ◽  
Yu Liu

A one-dimensional full transient droplet evaporation model was established under consideration of factors such as high pressure vapour-liquid equilibrium, high-pressure physical property corrections, gas phase dissolution, and shift of interface. The finite volume method was used for discretization to study the migration and evaporation characteristics of the surrogate fuel for kerosene, which was constituting of (mass fraction)80% n-decane and 20%1,2,4-trimethylbenzene, under supercritical conditions. The results show that, under supercritical conditions, the higher the temperature and the pressure, the easier and the sooner the supercritical migration occurs. Before the supercritical migration occurring, there was obvious boundary between the gas and liquid phases. The mass fraction of component was discontinuous, and the gradient of temperature near the interface was large. After the supercritical migration occurring, the surface of the droplet disappeared, there was no obvious boundary between the gas and liquid phases, and the distribution of the components mass fraction and temperature were continuously. With the increase of the initial temperature of the droplet, the time of the supercritical migration was greatly advanced, the rise rate of the droplet surface temperature increased, and the phenomenon of endothermic expansion no longer appeared.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1503
Author(s):  
Przemyslaw Niedzielski ◽  
Ewa Raj ◽  
Zbigniew Lisik ◽  
Jerzy Plesiewicz ◽  
Ewa Grzanka ◽  
...  

The present paper focuses on the high-pressure metal-organic vapor phase epitaxy (MOVPE) upside-down vertical reactor (where the inlet of cold gases is below a hot susceptor). This study aims to investigate thermo-kinetic phenomena taking place during the GaN (gallium nitride) growth process using trimethylgallium and ammonia at a pressure of above 2 bar. High pressure accelerates the growth process, but it results in poor thickness and quality in the obtained layers; hence, understanding the factors influencing non-uniformity is crucial. The present investigations have been conducted with the aid of ANSYS Fluent finite volume method commercial software. The obtained results confirm the possibility of increasing the growth rate by more than six times through increasing the pressure from 0.5 bar to 2.5 bar. The analysis shows which zones vortexes form in. Special attention should be paid to the transitional flow within the growth zone as well as the viewport. Furthermore, the normal reactor design cannot be used under the considered conditions, even for the lower pressure value of 0.5 bar, due to high turbulences.


Author(s):  
Marek Malecki ◽  
James Pawley ◽  
Hans Ris

The ultrastructure of cells suspended in physiological fluids or cell culture media can only be studied if the living processes are stopped while the cells remain in suspension. Attachment of living cells to carrier surfaces to facilitate further processing for electron microscopy produces a rapid reorganization of cell structure eradicating most traces of the structures present when the cells were in suspension. The structure of cells in suspension can be immobilized by either chemical fixation or, much faster, by rapid freezing (cryo-immobilization). The fixation speed is particularly important in studies of cell surface reorganization over time. High pressure freezing provides conditions where specimens up to 500μm thick can be frozen in milliseconds without ice crystal damage. This volume is sufficient for cells to remain in suspension until frozen. However, special procedures are needed to assure that the unattached cells are not lost during subsequent processing for LVSEM or HVEM using freeze-substitution or freeze drying. We recently developed such a procedure.


Author(s):  
Robert Corbett ◽  
Delbert E. Philpott ◽  
Sam Black

Observation of subtle or early signs of change in spaceflight induced alterations on living systems require precise methods of sampling. In-flight analysis would be preferable but constraints of time, equipment, personnel and cost dictate the necessity for prolonged storage before retrieval. Because of this, various tissues have been stored in fixatives and combinations of fixatives and observed at various time intervals. High pressure and the effect of buffer alone have also been tried.Of the various tissues embedded, muscle, cartilage and liver, liver has been the most extensively studied because it contains large numbers of organelles common to all tissues (Fig. 1).


Author(s):  
R.E. Crang ◽  
M. Mueller ◽  
K. Zierold

Obtaining frozen-hydrated sections of plant tissues for electron microscopy and microanalysis has been considered difficult, if not impossible, due primarily to the considerable depth of effective freezing in the tissues which would be required. The greatest depth of vitreous freezing is generally considered to be only 15-20 μm in animal specimens. Plant cells are often much larger in diameter and, if several cells are required to be intact, ice crystal damage can be expected to be so severe as to prevent successful cryoultramicrotomy. The very nature of cell walls, intercellular air spaces, irregular topography, and large vacuoles often make it impractical to use immersion, metal-mirror, or jet freezing techniques for botanical material.However, it has been proposed that high-pressure freezing (HPF) may offer an alternative to the more conventional freezing techniques, inasmuch as non-cryoprotected specimens may be frozen in a vitreous, or near-vitreous state, to a radial depth of at least 0.5 mm.


Author(s):  
William P. Sharp ◽  
Robert W. Roberson

The aim of ultrastructural investigation is to analyze cell architecture and relate a functional role(s) to cell components. It is known that aqueous chemical fixation requires seconds to minutes to penetrate and stabilize cell structure which may result in structural artifacts. The use of ultralow temperatures to fix and prepare specimens, however, leads to a much improved preservation of the cell’s living state. A critical limitation of conventional cryofixation methods (i.e., propane-jet freezing, cold-metal slamming, plunge-freezing) is that only a 10 to 40 μm thick surface layer of cells can be frozen without distorting ice crystal formation. This problem can be allayed by freezing samples under about 2100 bar of hydrostatic pressure which suppresses the formation of ice nuclei and their rate of growth. Thus, 0.6 mm thick samples with a total volume of 1 mm3 can be frozen without ice crystal damage. The purpose of this study is to describe the cellular details and identify potential artifacts in root tissue of barley (Hordeum vulgari L.) and leaf tissue of brome grass (Bromus mollis L.) fixed and prepared by high-pressure freezing (HPF) and freeze substitution (FS) techniques.


Sign in / Sign up

Export Citation Format

Share Document