Physicochemical properties of β-carotene and eugenol co-encapsulated flax seed oil powders using OSA starches as wall material

2017 ◽  
Vol 73 ◽  
pp. 274-283 ◽  
Author(s):  
Hafiz Rizwan Sharif ◽  
H. Douglas Goff ◽  
Hamid Majeed ◽  
Muhammad Shamoon ◽  
Fei Liu ◽  
...  
2019 ◽  
Author(s):  
Chem Int

Biodiesel produced by transesterification process from vegetable oils or animal fats is viewed as a promising renewable energy source. Now a day’s diminishing of petroleum reserves in the ground and increasing environmental pollution prevention and regulations have made searching for renewable oxygenated energy sources from biomasses. Biodiesel is non-toxic, renewable, biodegradable, environmentally benign, energy efficient and diesel substituent fuel used in diesel engine which contributes minimal amount of global warming gases such as CO, CO2, SO2, NOX, unburned hydrocarbons, and particulate matters. The chemical composition of the biodiesel was examined by help of GC-MS and five fatty acid methyl esters such as methyl palmitate, methyl stearate, methyl oleate, methyl linoleate and methyl linoleneate were identified. The variables that affect the amount of biodiesel such as methanol/oil molar ratio, mass weight of catalyst and temperature were studied. In addition to this the physicochemical properties of the biodiesel such as (density, kinematic viscosity, iodine value high heating value, flash point, acidic value, saponification value, carbon residue, peroxide value and ester content) were determined and its corresponding values were 87 Kg/m3, 5.63 Mm2/s, 39.56 g I/100g oil, 42.22 MJ/Kg, 132oC, 0.12 mgKOH/g, 209.72 mgKOH/g, 0.04%wt, 12.63 meq/kg, and 92.67 wt% respectively. The results of the present study showed that all physicochemical properties lie within the ASTM and EN biodiesel standards. Therefore, mango seed oil methyl ester could be used as an alternative to diesel engine.


Author(s):  
F. I. Omizegba ◽  
K. A. Bello ◽  
H. M. Adamu ◽  
D. E. A. Boryo ◽  
J. O. Abayeh ◽  
...  

This paper presents the results of some physicochemical properties of cellulosic fabric obtained by esterification using 50 cm3 of oil extracted from the seed of Balanites aegyptiaca. The oil was extracted under reflux with hexane which gave 40% yield and 0.22% moisture content. The identified cellulosic materials 10 cm and 21 cm x 2.5 cm) were subjected to purification process of scouring, bleaching and mercerization to obtain cleaner, whiter and stronger fabric that could withstand esterification treatment. The yarn crimp was 25% and 15% for warp and weft direction respectively, while the grey fabric gave the lowest of 5% and 8% for warp and weft directions. The linear density (45 tex) was recorded for the esterified fabric compared to 37 tex for the grey fabric along warp direction. The fabric sett increased from 24 thd/cm for grey to 27 thd/cm for esterified along warp direction and 16 thd/cm to 23 thd/cm along weft direction. There was an obvious reduction in shrinkage from 31 for mercerized fabric to 28 along warp direction after esterification and 21 to 19 along weft direction. The tensile parameter was 262.60 N and 166.24 N with extension of 13.92 mm and 12.23 mm along warp and weft directions respectively while the grey fabric recorded 223.87 N and 109.39 N with extensions of 3.64 mm and 3.56 mm in warp and weft direction respectively. There was a remarkable improvement in the dry and wet crease recovery angles after esterification (105º dry and 65º wet, 102º dry and 59º wet) along warp and weft direction respectively. The grey fabric gave the lowest crease recovery (50º dry and 37º wet, 45º dry and 35º wet) along warp and weft directions respectively. The esterified fabric recorded lower water absorption. The improvements in the investigated properties may be due to dimensional stability, flexibility and fineness due to esterification. This research is commendable because biodegradable organic seed oil is used to modify the physicochemical properties of cellulosic fabric for the first time. These incredible effects of the seed oil on cellulose is an immense contribution to knowledge, hence the oil is recommended for replacement of the present day toxic chemicals used in textile finishing of cellulosic fabrics.


2021 ◽  
Vol 72 (3) ◽  
pp. e415 ◽  
Author(s):  
M. De Wit ◽  
V.K. Motsamai ◽  
A. Hugo

Cold-pressed seed oil from twelve commercially produced cactus pear cultivars was assessed for oil yield, fatty acid composition, physicochemical properties, quality and stability. Large differences in oil content, fatty acid composition and physicochemical properties (IV, PV, RI, tocopherols, ORAC, % FFA, OSI and induction time) were observed. Oil content ranged between 2.51% and 5.96% (Meyers and American Giant). The important fatty acids detected were C16:0, C18:0, C18:1c9 and C18:2c9,12, with C18:2c9,12, the dominating fatty acid, ranging from 58.56-65.73%, followed by C18:1c9, ranging between 13.18-16.07%, C16:0, which ranged between 10.97 - 15.07% and C18:0, which ranged between 2.62-3.18%. Other fatty acids such as C14:0, C16:1c9, C17:0, C17:1c10, C20:0, C18:3c9,12,15 and C20:3c8,11,14 were detected in small amounts. The quality parameters of the oils were strongly influenced by oil content, fatty acid composition and physicochemical properties. Oil content, PV, % FFA, RI, IV, tocopherols, ORAC and ρ-anisidine value were negatively correlated with OSI. C18:0; C18:1c9; C18:2c9,12; MUFA; PUFA; n-6 and PUFA/SFA were also negatively correlated with OSI. Among all the cultivars, American Giant was identified as the paramount cultivar with good quality traits (oil content and oxidative stability).


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Aaron Mehrer ◽  
Afrin Kamal ◽  
Betty L Herndon ◽  
Eugene Fibuch ◽  
Tim Quinn ◽  
...  
Keyword(s):  
Seed Oil ◽  

Sign in / Sign up

Export Citation Format

Share Document