Variation of gas composition and energy utilization in biomass CLG process with Fe and Ca oxides through thermodynamic simulation

Fuel ◽  
2021 ◽  
pp. 122433
Author(s):  
Xiaodong Zhang ◽  
Shiduo Wang ◽  
Hongqing Feng ◽  
Laizhi Sun ◽  
Hua Chen ◽  
...  
Author(s):  
Ryan A. Bandura ◽  
Timothy J. Jacobs

Computational fluid dynamics (CFD) is now a ubiquitous computational tool for engine design and diagnosis. It is often necessary to provide well-known initial cycle conditions to commence the CFD computations. Such initial conditions can be provided by experimental data. To create an opportunity to computationally study engine conditions where experimental data are not available, a zero-dimensional quasi-predictive thermodynamic simulation is developed that uses well-established spray model to predict rate of heat release and calculated burned gas composition and temperature to predict nitric oxide (NO) concentration. This simulation could in turn be used in reverse to solve for initial cylinder conditions for a targeted NO concentration. This paper details the thermodynamic simulation for diesel engine operating conditions. The goal is to produce a code that is capable of predicting NO emissions as well as performance characteristics such as mean effective pressure (MEP) and brake specific fuel consumption (BSFC). The simulation uses general conservation of mass and energy approaches to model intake, compression, and exhaust. Rate of heat release prediction is based on an existing spray model to predict how fuel concentrations within the spray jet change with penetration. Rate of heat release provides predicted cylinder pressure, which is then validated against experimental pressure data under known operating conditions. An equilibrium mechanism is used to determine burned gas composition which, along with burned gas temperature, can be used for prediction of NO in the cylinder. NO is predicted using the extended Zeldovich mechanism. This mechanism is highly sensitive to temperature, and it is therefore important to accurately predict cylinder gas temperature to obtain correct NO values. Additionally, MEP and BSFC are determined. The simulation focuses on single fuel injection events, but insights are provided to expand the simulation to model multiple injection events.


2013 ◽  
Vol 726-731 ◽  
pp. 2885-2893 ◽  
Author(s):  
Yu Sun ◽  
Bao Sheng Jin ◽  
Ya Ji Huang ◽  
Wu Zuo ◽  
Ji Qiang Jia ◽  
...  

Pyrolysis of sewage sludge for the fixed bed were investigated at different final temperatures (300-900 °C) to acquire distribution and characteristics of pyrolysis products. The mass balance was established on base of continuous on-line measurement of gases and integration of gas compounds to give a more accurate reflection on the yields distribution. It was observed that at low temperatures the liquid was the main product with maximum yield of 57 wt%(daf) at 500°C and the gas composition was mainly CO2. Under the condition of a higher pyrolysis temperature (above 600°C), secondary reaction occurred among phase of solid, liquid and gas and generated more CO and H2. From the perspective of energy utilization and accumulation of heavy metals, a lower temperature no more than 600°C is suitable for sewage sludge pyrolysis.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1440
Author(s):  
Chenyixuan Ni ◽  
Xiaodai Xue ◽  
Shengwei Mei ◽  
Xiao-Ping Zhang ◽  
Xiaotao Chen

As a fundamental infrastructure of energy supply for future society, energy Internet (EI) can achieve clean energy generation, conversion, storage and consumption in a more economic and safer way. This paper demonstrates the technology principle of advanced adiabatic compressed air energy storage system (AA-CAES), as well as analysis of the technical characteristics of AA-CAES. Furthermore, we propose an overall architectural scheme of a clean energy router (CER) based on AA-CAES. The storage and mutual conversion mechanism of wind and solar power, heating, and other clean energy were designed to provide a key technological solution for the coordination and comprehensive utilization of various clean energies for the EI. Therefore, the design of the CER scheme and its efficiency were analyzed based on a thermodynamic simulation model of AA-CAES. Meanwhile, we explored the energy conversion mechanism of the CER and improved its overall efficiency. The CER based on AA-CAES proposed in this paper can provide a reference for efficient comprehensive energy utilization (CEU) (93.6%) in regions with abundant wind and solar energy sources.


Author(s):  
G.D. Danilatos

Over recent years a new type of electron microscope - the environmental scanning electron microscope (ESEM) - has been developed for the examination of specimen surfaces in the presence of gases. A detailed series of reports on the system has appeared elsewhere. A review summary of the current state and potential of the system is presented here.The gas composition, temperature and pressure can be varied in the specimen chamber of the ESEM. With air, the pressure can be up to one atmosphere (about 1000 mbar). Environments with fully saturated water vapor only at room temperature (20-30 mbar) can be easily maintained whilst liquid water or other solutions, together with uncoated specimens, can be imaged routinely during various applications.


2020 ◽  
Vol 39 (6) ◽  
pp. 8139-8147
Author(s):  
Ranganathan Arun ◽  
Rangaswamy Balamurugan

In Wireless Sensor Networks (WSN) the energy of Sensor nodes is not certainly sufficient. In order to optimize the endurance of WSN, it is essential to minimize the utilization of energy. Head of group or Cluster Head (CH) is an eminent method to develop the endurance of WSN that aggregates the WSN with higher energy. CH for intra-cluster and inter-cluster communication becomes dependent. For complete, in WSN, the Energy level of CH extends its life of cluster. While evolving cluster algorithms, the complicated job is to identify the energy utilization amount of heterogeneous WSNs. Based on Chaotic Firefly Algorithm CH (CFACH) selection, the formulated work is named “Novel Distributed Entropy Energy-Efficient Clustering Algorithm”, in short, DEEEC for HWSNs. The formulated DEEEC Algorithm, which is a CH, has two main stages. In the first stage, the identification of temporary CHs along with its entropy value is found using the correlative measure of residual and original energy. Along with this, in the clustering algorithm, the rotating epoch and its entropy value must be predicted automatically by its sensor nodes. In the second stage, if any member in the cluster having larger residual energy, shall modify the temporary CHs in the direction of the deciding set. The target of the nodes with large energy has the probability to be CHs which is determined by the above two stages meant for CH selection. The MATLAB is required to simulate the DEEEC Algorithm. The simulated results of the formulated DEEEC Algorithm produce good results with respect to the energy and increased lifetime when it is correlated with the current traditional clustering protocols being used in the Heterogeneous WSNs.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (10) ◽  
pp. 595-602
Author(s):  
ALISHA GIGLIO ◽  
VLADIMIROS G. PAPANGELAKIS ◽  
HONGHI TRAN

The formation of hard calcite (CaCO3) scale in green liquor handling systems is a persistent problem in many kraft pulp mills. CaCO3 precipitates when its concentration in the green liquor exceeds its solubility. While the solubility of CaCO3 in water is well known, it is not so in the highly alkaline green liquor environment. A systematic study was conducted to determine the solubility of CaCO3 in green liquor as a function of temperature, total titratable alkali (TTA), causticity, and sulfidity. The results show that the solubility increases with increased temperature, increased TTA, decreased causticity, and decreased sulfidity. The new solubility data was incorporated into OLI (a thermodynamic simulation program for aqueous salt systems) to generate a series of CaCO3 solubility curves for various green liquor conditions. The results help explain how calcite scale forms in green liquor handling systems.


Sign in / Sign up

Export Citation Format

Share Document