Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor

2007 ◽  
Vol 88 (5) ◽  
pp. 523-531 ◽  
Author(s):  
Ozlem Onay
2014 ◽  
Vol 925 ◽  
pp. 115-119 ◽  
Author(s):  
Alina Rahayu Mohamed ◽  
Zainab Hamzah ◽  
Mohamed Zulkali Mohamed Daud

Malaysia is well-known as one of the main producer and exporter of palm oil. With the high production of crude palm oil (CPO), huge amount of empty fruit bunch was generated as by-products. The abundant amount of EFB produced required careful waste management procedures. Pyrolysis is thermochemical decomposition of biomass in inert environment towards its conversion into bio-oil, bio-char and gas. In this study, the pyrolysis of empty fruit bunch (EFB) was conducted using a fixed bed reactor. The pertinent process parameters such as pyrolysis temperature, particle sizes and heating rates were investigated via the determination of the percentage product yields such as bio-oil, bio-char and gas. The first series of experiment was conducted to determine the effect of pyrolysis temperatures. The final pyrolysis temperature was varied at 300, 400, 500, 600 and 700 °C at constant heating rates and the nitrogen flowrates of 30 °C/min and 100 cm3/min respectively. It was determined that at pyrolysis temperature of 500 °C maximum bio-oil yield of 35.00 % was obtained with bio-char and gas yield of 26.98 and 38.02% respectively. In the second series of experiment, the effect of particle sizen was studied. The EFB particle was varied at <125, 125-250, 250-500, 500-710 and 710-1000 μm. The pyrolysis temperature was fixed at 500 °C with nitrogen flowrate of 100 cm3/min and heating rate of 30 °C/min. It was determined that using EFB particle size of 250-500 μm, the maximum bio-oil of 38.52% was achieved with bio-char and gas yields of 25.06 % and 36.42% respectively. In the third series of experiment to determine the effect of heating rates, the heating rates was varied at 10, 20, 30, 40, 50 and 60 °C/min towards the final pyrolysis temperature of 500 °C with constant nitrogen flowrates of 100 cm3/min. The results obtained showed that the highest amount of bio-oil of 40.81% was obtained when the heating rate of 20 °C/min was used. The bio-char and gas yield obtained were 24.69% and 34.50% respectively.


2020 ◽  
Vol 849 ◽  
pp. 47-52
Author(s):  
Siti Jamilatun ◽  
Aster Rahayu ◽  
Yano Surya Pradana ◽  
Budhijanto ◽  
Rochmadi ◽  
...  

Nowadays, energy consumption has increased as a population increases with socio-economic developments and improved living standards. Therefore, it is necessary to find a replacement for fossil energy with renewable energy sources, and the potential to develop is biofuels. Bio-oil, water phase, gas, and char products will be produced by utilizing Spirulina platensis (SPR) microalgae extraction residue as pyrolysis raw material. The purpose of this study is to characterize pyrolysis products and bio-oil analysis with GC-MS. Quality fuel is good if O/C is low, H/C is high, HHV is high, and oxygenate compounds are low, but aliphatic and aromatic are high. Pyrolysis was carried out at a temperature of 300-600°C with a feed of 50 grams in atmospheric conditions with a heating rate of 5-35°C/min, the equipment used was a fixed-bed reactor. The higher the pyrolysis temperature, the higher the bio-oil yield will be to an optimum temperature, then lower. The optimum temperature of pyrolysis is 550°C with a bio-oil yield of 23.99 wt%. The higher the pyrolysis temperature, the higher the H/C, the lower O/C. The optimum condition was reached at a temperature of 500°C with the values of H/C, and O/C is 1.17 and 0.47. With an increase in temperature of 300-600°C, HHV increased from 11.64 MJ/kg to 20.63 MJ/kg, the oxygenate compound decreased from 85.26 to 37.55 wt%. Aliphatics and aromatics increased, respectively, from 5.76 to 36.72 wt% and 1.67 to 6.67 wt%.


Author(s):  
O¨zlem Onay ◽  
O¨. Mete Koc¸kar

In this study, the safflower seed (Carthamus tinctorius L.) was used as biomass sample for catalytic pyrolysis using commercial catalyst (Criterion-454) in the nitrogen atmosphere. Experimental studies were conducted in a well-swept resistively heated fixed bed reactor with a heating rate of 300°Cmin−1, a final pyrolysis temperature of 550°C and particle size of 0.6–0.85 mm. In order to establish the effect of catalyst ratio on the pyrolysis yields, experiments were conducted at a range of catalyst ratios between 1, 3, 5, 7, 10, 20% (w/w). The bio-oils were characterized by elemental analysis and some spectroscopic and chromatographic techniques.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1970 ◽  
Author(s):  
Jayanto Kumar Sarkar ◽  
Qingyue Wang

In the present study, a series of laboratory experiments were conducted to examine the impact of pyrolysis temperature on the outcome yields of waste coconut shells in a fixed bed reactor under varying conditions of pyrolysis temperature, from 400 to 800 °C. The temperature was increased at a stable heating rate of about 10 °C/min, while keeping the sweeping gas (Ar) flow rate constant at about 100 mL/min. The bio-oil was described by Fourier transform infrared spectroscopy (FTIR) investigations and demonstrated to be an exceptionally oxygenated complex mixture. The resulting bio-chars were characterized by elemental analysis and scanning electron microscopy (SEM). The output of bio-char was diminished pointedly, from 33.6% to 28.6%, when the pyrolysis temperature ranged from 400 to 600 °C, respectively. In addition, the bio-chars were carbonized with the expansion of the pyrolysis temperature. Moreover, the remaining bio-char carbons were improved under a stable structure. Experimental results showed that the highest bio-oil yield was acquired at 600 °C, at about 48.7%. The production of gas increased from 15.4 to 18.3 wt.% as the temperature increased from 400 to 800 °C. Additionally, it was observed that temperature played a vital role on the product yield, as well as having a vital effect on the characteristics of waste coconut shell slow-pyrolysis.


2014 ◽  
Vol 695 ◽  
pp. 239-242
Author(s):  
K. Azduwin ◽  
Mohd Jamir Mohd Ridzuan ◽  
A.R. Mohamed ◽  
S.M. Hafis

Increasing demand of fossils fuel for many purposes has cause for the limited sources which lead to the finding for new alternative energy based on biomass because of its sustainable properties. Palm-pressed fibre (PPF) is the biomass waste from palm oil processing which has use minimally for boiler to generate heat. The pyrolysis of PPF in a fixed-bed reactor has the potential as an alternative for its conversion into bio-oil, bio-char and gas. The characterization of PPF where involves elemental analysis, proximate analysis, calorific analysis and component analysis. The pyrolysis of the PPF was performed in the fixed-bed reactor at temperature between 300 - 700 °C and heating rate in the range of 10-70 °C/min with constant flow of nitrogen at 100 cm3/min and 30 minutes hold time.The highest bio-oil yield produced was 44.98% at optimum temperature 500°C and heating rate 30°C/min. By analysis the bio-oil using Fourier transform infrared spectroscopy (FTIR), it was found to contains alkenes, ketones, polymeric hydroxyl compound, carboxylic acid, aldehyde and water.


2014 ◽  
Vol 695 ◽  
pp. 228-231 ◽  
Author(s):  
K. Azduwin ◽  
Mohd Jamir Mohd Ridzuan ◽  
A.R. Mohamed ◽  
S.M. Hafis

Uncontrolled uses of fossil fuels lead to serious energy problems and since Malaysia is one of the largest producers of palm oil in the world, it has caused a lot of waste such as empty fruit bunches (EFB) which can actually be converted into renewable energy via pyrolysis. In this work, firstly the characterizations of the EFB were analyzed such as elemental, proximate and component analysis. The pyrolysis experiment of empty fruit bunch using vertical fixed-bed reactor was conducted at different pyrolysis temperature range from 300 - 600 °C and the particle size of EFB was also varied from 125-250 μm with constant nitrogen flow rate of 100 cm3/min, heating rate of 30 °C/min, and 30 minutes hold time. For the effect of temperature, the optimum pyrolysis temperature was 500 °C to produce maximum yield of bio-oil which is 39.2 wt. % while 46.13 wt. % is the highest bio-oil yield produced at size of 500-710 μm for the effect of particle size. The analysis on bio-oil was conducted by using Fourier Transform Infrared (FTIR) with the results shows for the presents of phenol/alcohol group, ketones and C-O bond. The bio-oil obtained is in the acidic condition with pH 3.5.


2011 ◽  
Vol 347-353 ◽  
pp. 2107-2111
Author(s):  
Hong Ting Ma ◽  
Guo Li Yang ◽  
Su Feng Hao

A typical printed circuit boards (PCBs) has been investigated by using thermo-gravimetric analyser to study its pyrolysis characteristics, the results indicate that the maximum weight loss rate occurs at temperature between 320°C and 360°C. A higher heating rate results in higher initial, final, peak temperature, and a longer process of significant weight loss. At the same pyrolysis temperature, heating rate has little effect on the total weight loss. In addition, 1kg PCBs based FR-4 was pyrolyzed in a fixed-bed reactor. The pyrolysis residues are very friable, the organic, glass fiber and metallic fractions can easily be separated, and the electrical components can easily be removed from the remains. Considering energy-saving, better control and design of the pyrolysis process, the optimal pyrolysis parameters were suggested at heating rate 10°C/min, final pyrolysis temperature 500°C and holding time 30 min.


Clean Energy ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 527-535
Author(s):  
Henry Oghenero Orugba ◽  
Jeremiah Lekwuwa Chukwuneke ◽  
Henry Chukwuemeka Olisakwe ◽  
Innocent Eteli Digitemie

Abstract The low yield and poor fuel properties of bio-oil have made the pyrolysis production process uneconomic and also limited bio-oil usage. Proper manipulation of key pyrolysis variables is paramount in order to produce high-quality bio-oil that requires less upgrading. In this research, the pyrolysis of pig hair was carried out in a fixed-bed reactor using a calcium oxide catalyst derived from calcination of turtle shells. In the pyrolysis process, the influence of three variables—temperature, heating rate and catalyst weight—on two responses—bio-oil yield and its higher heating value (HHV)—were investigated using Response Surface Methodology. A second-order regression-model equation was obtained for each response. The optimum yield of the bio-oil and its HHV were obtained as 51.03% and 21.87 mJ/kg, respectively, at 545oC, 45.17oC/min and 2.504 g of pyrolysis temperature, heating rate and catalyst weight, respectively. The high R2 values of 0.9859 and 0.9527, respectively, obtained for the bio-oil yield and its HHV models using analysis of variance revealed that the models can adequately predict the bio-oil yield and its HHV from the pyrolysis process.


2009 ◽  
Vol 6 (2) ◽  
pp. 33 ◽  
Author(s):  
E. Ganapathy Sundaram ◽  
E. Natarajan

 Fixed-bed slow pyrolysis experiments of coconut shell have been conducted to determine the effect of pyrolysis temperature, heating rate and particle size on the pyrolysis product yields. The effect of vapour residence time on the pyrolysis yield was also investigated by varying the reactor length. Pyrolysis experiments were performed at pyrolysis temperature between 400 and 600°C with a constant heating rate of 60°C/min and particle sizes of 1.18-1.80 mm. The optimum process conditions for maximizing the liquid yield from the coconut shell pyrolysis in a fixed bed reactor were also identified. The highest liquid yield was obtained at a pyrolysis temperature of 550 °C, particle size of 1.18-1.80 mm, with a heating rate of 60 °C/min in a 200 mm length reactor. The yield of obtained char, liquid and gas was 22-31 wt%, 38-44 wt% and 30-33 wt% respectively at different pyrolysis conditions. The results indicate that the effects of pyrolysis temperature and particle size on the pyrolysis yield are more significant than that of heating rate and residence time. The various characteristics of pyrolysis oil obtained under the optimum conditions for maximum liquid yield were identified on the basis of standard test methods. 


Sign in / Sign up

Export Citation Format

Share Document