Gasification and activation behaviors of coal gangue with Na2CO3 in CO2 atmosphere

2022 ◽  
Vol 228 ◽  
pp. 107163
Author(s):  
Hengyang Miao ◽  
Zhiqing Wang ◽  
Haochen Sun ◽  
Xiangyu Li ◽  
Yangang Mei ◽  
...  
Keyword(s):  
2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2809-2821
Author(s):  
Zhen Gong ◽  
Changzhong Song ◽  
Yuanyuan Li ◽  
Ze Li ◽  
Xiangru Jia

Oxygen concentration and biomass content are key factors of the combustion of a mixed sample of biomass and coal gangue. Herein, we studied the effect of oxygen concentration and biomass content and their corresponding combustion and kinetic characteristics. Experiments were conducted in a thermogravimetric analyzer under an O2/CO2 atmosphere. Results showed that the fixed carbon combustion temperature, ignition temperature, and exothermic peak temperature decreased with oxygen concentration increased. By contrast, the burning rate of volatilization increased with oxygen concentration increased. The total and maximum loss rates of the sample, the burnout temperature, the exothermic peak temperature, and the comprehensive combustion index S gradually increased. As oxygen concentration increased, the activation energy at the initial stage of combustion gradually decreased, whereas the activation energy at the end of the reaction gradually increased when the oxygen concentration increased. Activation energy could be rapidly reduced after a small amount of biomass was added, whereas the biomass content had no significant influence on the activation energy of the samples at the end of combustion.


Author(s):  
Jiwei Zhang ◽  
Jingjing Xu ◽  
Shuaixia Liu ◽  
Baoxiang Gu ◽  
Feng Chen ◽  
...  

Background: Coal gangue was used as a catalyst in heterogeneous Fenton process for the degradation of azo dye and phenol. The influencing factors, such as solution pH gangue concentration and hydrogen peroxide dosage were investigated, and the reaction mechanism between coal gangue and hydrogen peroxide was also discussed. Methods: Experimental results showed that coal gangue has the ability to activate hydrogen peroxide to degrade environmental pollutants in aqueous solution. Under optimal conditions, after 60 minutes of treatment, more than 90.57% of reactive red dye was removed, and the removal efficiency of Chemical Oxygen Demand (COD) up to 72.83%. Results: Both hydroxyl radical and superoxide radical anion participated in the degradation of organic pollutant but hydroxyl radical predominated. Stability tests for coal gangue were also carried out via the continuous degradation experiment and ion leakage analysis. After five times continuous degradation, dye removal rate decreased slightly and the leached Fe was still at very low level (2.24-3.02 mg L-1). The results of Scanning Electron Microscope (SEM), energy dispersive X-Ray Spectrometer (EDS) and X-Ray Powder Diffraction (XRD) indicated that coal gangue catalyst is stable after five times continuous reuse. Conclusion: The progress in this research suggested that coal gangue is a potential nature catalyst for the efficient degradation of organic pollutant in water and wastewater via the Fenton reaction.


2019 ◽  
Vol 118 ◽  
pp. 02011
Author(s):  
Su Pan ◽  
Yu Pengfeng ◽  
Linbo Liu ◽  
Han Jing ◽  
Xiao Shen

The coal as fired, with unidentified characteristics of the coal gangue, was burned on a 300MW circulating fluidized bed unit. The equipment of the coal conveying system was damaged and the boiler operation was unstable. In response to the problems, the coal quality data and storage conditions of the coal were examined and the site was spot-checked to evaluate the coal quality characteristics. At the same time, the typical representative parameters of the coal handling system and boiler operation were selected. According to the analysis of coal quality and coal storage, the coal quality fluctuates greatly and the uniformity of particle size distribution is poor. There is actually the coal gangue with hard texture and hard to grind in the coal pile. The coal gangue will have adverse effects on the fine screening machine, fine crusher and other equipment. After burned this type of coal, the fluidized quality of the boiler bed is degraded to make an impact on the safe and stable operation of the boiler. It is recommended that the coal should be screened and then burned into the furnace to ensure safe and stable operation of the boiler.


2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


ACS Omega ◽  
2020 ◽  
Vol 5 (41) ◽  
pp. 26335-26346
Author(s):  
Min Lu ◽  
Zuhong Xiong ◽  
Kejing Fang ◽  
Jiqing Li ◽  
Xi Li ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1316
Author(s):  
Daniel Mahon ◽  
Gianfranco Claudio ◽  
Philip Eames

To improve the energy efficiency of an industrial process thermochemical energy storage (TCES) can be used to store excess or typically wasted thermal energy for utilisation later. Magnesium carbonate (MgCO3) has a turning temperature of 396 °C, a theoretical potential to store 1387 J/g and is low cost (~GBP 400/1000 kg). Research studies that assess MgCO3 for use as a medium temperature TCES material are lacking, and, given its theoretical potential, research to address this is required. Decomposition (charging) tests and carbonation (discharging) tests at a range of different temperatures and pressures, with selected different gases used during the decomposition tests, were conducted to gain a better understanding of the real potential of MgCO3 for medium temperature TCES. The thermal decomposition (charging) of MgCO3 has been investigated using thermal analysis techniques including simultaneous thermogravimetric analysis and differential scanning calorimetry (TGA/DSC), TGA with attached residual gas analyser (RGA) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (up to 650 °C). TGA, DSC and RGA data have been used to quantify the thermal decomposition enthalpy from each MgCO3.xH2O thermal decomposition step and separate the enthalpy from CO2 decomposition and H2O decomposition. Thermal analysis experiments were conducted at different temperatures and pressures (up to 40 bar) in a CO2 atmosphere to investigate the carbonation (discharging) and reversibility of the decarbonation–carbonation reactions for MgCO3. Experimental results have shown that MgCO3.xH2O has a three-step thermal decomposition, with a total decomposition enthalpy of ~1050 J/g under a nitrogen atmosphere. After normalisation the decomposition enthalpy due to CO2 loss equates to 1030–1054 J/g. A CO2 atmosphere is shown to change the thermal decomposition (charging) of MgCO3.xH2O, requiring a higher final temperature of ~630 °C to complete the decarbonation. The charging input power of MgCO3.xH2O was shown to vary from 4 to 8136 W/kg with different isothermal temperatures. The carbonation (discharging) of MgO was found to be problematic at pressures up to 40 bar in a pure CO2 atmosphere. The experimental results presented show MgCO3 has some characteristics that make it a candidate for thermochemical energy storage (high energy storage potential) and other characteristics that are problematic for its use (slow discharge) under the experimental test conditions. This study provides a comprehensive foundation for future research assessing the feasibility of using MgCO3 as a medium temperature TCES material. Future research to determine conditions that improve the carbonation (discharging) process of MgO is required.


Sign in / Sign up

Export Citation Format

Share Document