scholarly journals Quantification of fluid-mobile elements in white mica by LA-ICP-MS: From chemical composition to a potential micro-chemical vectoring tool in VMS exploration

2018 ◽  
Vol 188 ◽  
pp. 290-307 ◽  
Author(s):  
Azam Soltani Dehnavi ◽  
David R. Lentz ◽  
Christopher R.M. McFarlane ◽  
James A. Walker
2020 ◽  
Vol 4 (1) ◽  
pp. 13-18
Author(s):  
E. J. Oziegbe ◽  
V. O. Olarewaju ◽  
O. O. Ocan

Samples of mafic intrusive rock were analyzed for their mineralogical and chemical properties. The textural relationship was studied using the petrographic microscope, elemental composition of minerals was determined using the Electron Microprobe and the whole rock chemical analysis was done using the XRF and ICP-MS. The following minerals were observed in order of abundance; pyroxene, amphibole, plagioclase, biotite, opaque minerals, quartz and chlorite, with apatite and zircon occurring as accessory mineral. Two types of pyroxenes were observed; orthopyroxene (hypersthene) and clinopyroxene. Texturally, amphiboles have inclusions of plagioclase and pyroxene. The plagioclase has undergone sericitization. The chemical composition of the pyroxene is En51.95Fs44.53Wo3.52, biotite has Fe/(Fe+Mg):0.42, Mg/(Fe+Mg):0.59, and plagioclase is Ab63.5An34.55Or1.95. Whole rock chemistry shows a chemical composition; SiO2: 45.15 %, Al2O3: 14.04 %, Fe2O3: 16.01 %, MgO: 5.65 %, CaO: 7.58 % and TiO2: 3.59 %. There is an enrichment of LREE and a depletion of HREE. Based on the minerals, mineral chemistry and the geochemistry of the studied rock, the rock is mafic and hydrous minerals formed by hydration recrystallization of pyroxene. The rock has extensively retrogressed but has not been affected by any form of deformation.


2021 ◽  
Author(s):  
Barbara Sensuła ◽  
Nathalie Fagel

<p>Trees can provide annual records of ecosystem changes connected with human activity over several decades. These changes can be recorded in the pattern of variation of tree-rings widths and in the variation in the elemental composition of wood. Analysis of trace metal pollution is based on the assumption that element concentrations in tree foliage and tree rings represent element availability in the environment.</p><p>We determined the chemical composition of pine needles and annual tree rings to monitor environmental contamination in an urban forest environment in the most industrialized part of southern Poland.</p><p>The concentrations of trace elements (Cr, Co, Ni, Cu, Zn, Pb) and the Pb isotope composition were measured in needles from Pinus sylvestris L. growing in nine urban forests near five factories. Trace elemental concentration and Pb isotope ratio were determined by ICP-MS and MC-ICP-MS, respectively. The needles were characterized based on the concentrations of Cr, ranging from 0.05 to 0.7 mg/kg, Co, from 0.005 to 0.075 mg/kg, Ni, from 0.12 to 0.66 mg/kg, Cu, from 0.49 to 1.0 mg/kg, Zn, from 3.9 to 14 mg/kg, and Pb, from 0.06 to 0.53 mg/kg. The <sup>208</sup>Pb/<sup>206</sup>Pb ratio ranged from 2.08 to 2.11 and the <sup>206</sup>Pb/<sup>207</sup>Pb ratio between 1.15 and 1.17. The heterogeneity of Pb isotope ratio indicates that there are different sources affecting the Pb isotopic composition of pine needles (Sensuła et al., 2021).</p><p>In one of the investigated site, a radial trace-element profiles were determined by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (Laser ablation: New Wave Research UP-193 FX Fast Excimer, ICP-MS: Thermo Scientific X-Series2 with CCT -Collision Cell Technology) at Royal Museum for Central Africa (Belgium). LA-ICP-MS provides a repeatable, minimally destructive, sensitive method for determining many elements in wood tissue, with relatively high spatial resolution.Temporal variations of element concentration (median) in annual tree-rings of pines were compared with time series of wet deposition of pollutant and air pollutant concentration in the investigated area. The similar trends of magnitudes changes can be observed between analysed elements concentration (Na, Mg, Fe, Ni, Zn) and total wet deposition of these elements in the environment during vegetation period or these elements concentration in the rain (Sensuła et al. 2017). </p><p>Different space-time patterns of element accumulation in pine needles and annaul tree rings were observed. The variation in isotopic composition reflects a mix between different anthropogenic sources.</p><p> </p><p>References:</p><p>Sensuła, B., Wilczyński, S., Monin, L., Allan, M., Pazdur, A., & Fagel, N. (2017). Variations of tree ring width and chemical composition of wood of pine growing in the area nearby chemical factories, Geochronometria, 44(1), 226-239. doi: https://doi.org/10.1515/geochr-2015-0064</p><p>Sensuła, B., Fagel, N., & Michczyński, A. (2021). Radiocarbon, trace elements and pb isotope composition of pine needles from a highly industrialized region in southern Poland. Radiocarbon, 1-14. doi:10.1017/RDC.2020.132</p>


2020 ◽  
Author(s):  
Francesca Piccoli ◽  
Pierre Lanari ◽  
Jörg Hermann ◽  
Thomas Pettke

<p>Subducted metapelites are more prone to re-equilibrate during exhumation than mafic or ultramafic rocks to the point that recognizing high-pressure (HP) relicts is often very challenging. Geologic evidence from the Cima Lunga Unit (Central Alps) show this apparent discrepancy between high to ultra-high pressure metamorphism (28 kbar and 780 °C) recorded in mafic/ultramafic lenses, and Barrovian metamorphism (<10 kbar, 650°C) in the adjacent metapelitic rocks. We collected a white mica – garnet – biotite – plagioclase – kyanite (+ quartz, + zircon, + rutile) bearing metapelite adjacent to the garnet metaperidotite lens that displays an apparently well equilibrated Barrovian mineral assemblage (garnet + plagioclase + biotite), with no macroscopic or microtextural indication of a HP and/or HT metamorphic event (e.g. omphacite crystals; migmatitic texture; polyphase inclusions). Nevertheless, microstructures like atoll-like garnet or large white mica flakes surrounded by biotite and ilmenite replacing rutile suggest incomplete re-equilibration. We investigated garnet and phengite crystals by electron probe and laser ablation-ICP-MS mapping. Major and trace element mapping reveals very complex mineral zoning in both minerals. In particular, high Ti content in phengite and increasing P and Zr contents in pyrope-rich garnet indicate that the studied rock underwent a HP-HT event. This is also supported by Zr in rutile thermometry that indicates temperatures well above the Barrovian metamorphism (T > 700 °C). We combined detailed textural analysis with petrological-geochemical data and thermodynamic modelling to reconstruct the metamorphic evolution of the studied rock. We show that, thank to incomplete re-equilibration, the rock documents an evolution from prograde to UHP-HT peak (27 kbar and 800 °C) to retrograde (Barrovian) conditions (10 kbar and 620 °C). Noteworthy, peak metamorphic conditions of metapelite coincide with peak metamorphic conditions of the garnet metaperidotite. Lastly, geochemical evidence for minor wet melting of the studied metapelite at HP-HT conditions was recognized and is likely linked to the dehydration of chlorite to form garnet peridotite in the adjacent ultramafic body. We propose that metapelites and ultramafic rocks were coupled before subduction or at least in its early stage. This finding opens new scenarios for the geodynamic interpretation of the Cima Lunga unit. We propose that the ultramafic lenses at Cima di Gagnone were parts of the exhumed and serpentinised mantle emplaced at the hyper-extended European continental margin of the Piemont-Ligurian ocean. Slices of the margin were detached and tectonically mixed in the subduction channel. These new constraints call for re-evaluation of the paleogeographic position of the Adula-Cima Lunga nappe.</p>


Author(s):  
О.С. Румянцева ◽  
А.А. Кадиева ◽  
С.В. Демиденко ◽  
Д.А. Ханин ◽  
М.В. Червяковская ◽  
...  

В статье рассмотрен химический состав серии стеклянных изделий, происходящих из раннесредневековых могильников центральных районов Северного Кавказа (втор. пол. V VIII в.). Стекло проанализировано методами SEM EDS, EPMA, LA ICP MS. Стекло одного из украшений изготовлено на золе растений и происхождением связано с регионом к востоку от Евфрата (возможно, с сасанидским Ираном) остальные стекла содовые и происходят, вероятно, из Восточного и Юго Восточного Средиземноморья. По составу они находят соответствие среди групп, распространенных на территории Римской империи как в синхронное, так и в более раннее время (HIMT, группы Foy 3.2 Foy 4, Левантийская 1, римское зеленоголубое). Некоторые признаки химического состава позволяют говорить о случайном характере сырья, использовавшегося при изготовлении вставок, и/или о разном происхождении самих украшений со вставками. The paper explores the chemical composition of a series of glass items originating from the early medieval cemeteries discovered in the North Caucasus central regions (second half of the 5th 8th centuries). The glass was analyzed by SEM EDS, EPMA, LA ICP MS methods. The glass of one item was made of plant ash glass, originated from a region east of the Euphrates (possibly, Sasanian Iran) other items were made from soda glass and, most likely, came from the Eastern and Southeastern Mediterranean. Their composition is similar to the glass of the groups well known in the Roman Empire during the same period and earlier (HIMT, Foy 3.2 Foy 4, Roman bluegreen, Levantine I groups). Some aspects of the chemical composition suggest that the the accidental choice of the glass used in making inserts and/or about different origin of the items with inserts.


2017 ◽  
pp. 69-82 ◽  
Author(s):  
Valentina Lyubomirova ◽  
Žiga Šmit ◽  
Helena Fajfar ◽  
Ivelin Kuleff
Keyword(s):  

Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 125 ◽  
Author(s):  
Azam Soltani Dehnavi ◽  
Christopher McFarlane ◽  
David Lentz ◽  
Sean McClenaghan ◽  
James Walker

The compositions of phyllosilicates, with a focus on fluid-mobile elements, were evaluated as a means to fingerprint the Middle Ordovician metamorphosed (greenschist facies) volcanogenic massive sulfide deposits of the Bathurst Mining Camp (BMC), Canada. Ninety-five drill-core samples from six of the major deposits of the Bathurst Mining Camp (Brunswick No. 12, Heath Steele B zone, Halfmile Lake Deep zone, Key Anacon East zone, Louvicourt, and Restigouche) were analyzed using electron microprobe and laser ablation inductively coupled plasma-mass spectrometry. Typically, phyllosilicates (chlorite, white mica, and to a lesser extent biotite) are ubiquitous phases in the host rocks of the massive sulfide deposits of the BMC. Electron microprobe analysis results show a wide compositional variation in chlorite and white mica. Laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis was performed to measure fluid-mobile elements, showing that Tl is distinctly enriched in all white mica (up to 719 ppm) relative to chlorite (up to 50.1 ppm). Chlorite hosts Sn (up to 4600 ppm), Hg (up to 7.3 ppm), Sb (up to 35.4 ppm), As (up to 1320 ppm), In (up to 307 ppm), Cd (up to 83.2 ppm), and Se (up to 606 ppm). White mica hosts Sn (up to 1316 ppm), Hg (up to 93 ppm), Sb (up to 1630 ppm), As (up to 14,800 ppm), In (up to 1186 ppm), Cd (up to 98 ppm), and Se (up to 38.8 ppm). Limited LA-ICP-MS analysis on biotite indicates a higher overall concentration of Tl (mean = 14.6 ppm) relative to co-existing white mica (mean = 2.18 ppm). On average, biotite is also more enriched in Hg, Sn, and Ba relative to chlorite and white mica. Laser Ablation ICP-MS profiles of chlorite, white mica, and biotite demonstrate smooth time-dependent variations diagnostic of structural substitution of these elements. Compositional variation of chlorite-white mica pairs presented in the current study shows systematic variations as a function of distance from the mineralized horizons. This highlights the potential to use trace-element signatures in these phyllosilicate pairs to identify proximal (chlorite) and distal (white mica) footprints for volcanogenic massive sulfides exploration.


Resources ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 115
Author(s):  
Barbara Bielowicz

The chemical composition of coal ash and the content of the critical elements Ga, Sc, and V in coal and ash are examined herein. In this study, lignite and bituminous coal from Polish deposits were used. The coals were subjected to ultimate and proximate analysis; the petrographic composition was determined based on maceral groups. The chemical composition of ash and the content of critical elements were determined using ICP-MS. The obtained results were correlated and Pearson’s linear correlation coefficient was determined. Based on the correlation analysis, the relationship between the chemical composition of ash and the proximate and ultimate analyses was demonstrated. The content of selected critical elements in the tested deposits was lower than the Clarke value in coal. However, in some deposits these contents are much higher in coal ashes. The higher levels of Ga, V, and Sc in the ash are associated with Al2O3. Therefore, it can be stated that ashes can be a potential source of some raw materials. The highest concentrations of critical elements in coal and ash were recorded in the Lublin Coal Basin. Supra-Clarke contents of Ga, V, and Sc were recorded in the Bogdanka coal mine.


2021 ◽  
Author(s):  
Xianghui Jiang ◽  
Longqian Xiao

Abstract Lonicera fulvotomentosa Hsu et S. C. Cheng (L. fulvotomentosa), a vine shrub found in Southwestern China, is used for treating epidemic fever and infectious diseases, such as SARS and Avian Influenza. Here, we investigated the chemical composition and nutritional content of dried flowers of L. fulvotomentosa grown in yellow loam and Karst landform soil in Guizhou, China. The moisture content in all samples varied from 3.25 to 3.63%, lipids from 7.76 to 9.93%, fiber from 6.93 to 7.34%, ashes from 12.32 to 12.76%, crude protein from 7.85 to 8.53%, and carbohydrates from 56.21 to 59.77%. Using inductively coupled plasma-mass spectroscopy (ICP-MS), the predominant mineral elements in the dried flowers were found to be calcium (297.34-351.26 mg/kg), potassium (132.56-140.37 mg/kg), iron (37.77–41.25 mg/kg), and magnesium (9.47–11.36 mg/kg). Also, HPLC identified flavonoids (kaempferol, rutin, quercetin, luteolin, and apigenin) and phenolic acids (caffeic acid, gallic acid, and chlorogenic acid). Thus, the chemical composition of L. fulvotomentosa was similar to that of Lonicera japonica Thunb. (L. japonica). Thus, it could be used as an alternative to L. japonica. Our results showed that the dried flower of L. fulvotomentosa had an extremely high content of chlorogenic acids and caffeic acid, which could be developed as a candidate molecule as HIV inhibitors.


Sign in / Sign up

Export Citation Format

Share Document