Inhibitory effects of soybean oligosaccharides and water-soluble soybean fibre on formation of putrefactive compounds from soy protein by gut microbiota

2017 ◽  
Vol 97 ◽  
pp. 173-180 ◽  
Author(s):  
Toru Nakata ◽  
Daisuke Kyoui ◽  
Hajime Takahashi ◽  
Bon Kimura ◽  
Takashi Kuda
2021 ◽  
Author(s):  
Xiao Guo ◽  
Xuedan Cao ◽  
Xiugui Fang ◽  
Ailing Guo ◽  
Erhu Li

In this study, Ougan juice (OJ) and lactic acid bacteria fermented Ougan juice (FOJ) were investigated individually for their capability of preventing obesity in high-fat diet (HFD)-fed C57BL/6J mice. After...


2004 ◽  
Vol 287 (6) ◽  
pp. L1145-L1153 ◽  
Author(s):  
Kaushik Nag ◽  
Karina Rodriguez-Capote ◽  
Amiya Kumar Panda ◽  
Laura Frederick ◽  
Stephen A. Hearn ◽  
...  

C-reactive protein (CRP) and surfactant protein A (SP-A) are phosphatidylcholine (PC) binding proteins that function in the innate host defense system. We examined the effects of CRP and SP-A on the surface activity of bovine lipid extract surfactant (BLES), a clinically applied modified natural surfactant. CRP inhibited BLES adsorption to form a surface-active film and the film's ability to lower surface tension (γ) to low values near 0 mN/m during surface area reduction. The inhibitory effects of CRP were reversed by phosphorylcholine, a water-soluble CRP ligand. SP-A enhanced BLES adsorption and its ability to lower γ to low values. Small amounts of SP-A blocked the inhibitory effects of CRP. Electron microscopy showed CRP has little effect on the lipid structure of BLES. SP-A altered BLES multilamellar vesicular structure by generating large, loose bilayer structures that were separated by a fuzzy amorphous material, likely SP-A. These studies indicate that although SP-A and CRP both bind PC, there is a difference in the manner in which they interact with surface films.


2017 ◽  
Vol 23 (1) ◽  
pp. 76-83
Author(s):  
Wei Yang ◽  
Bin Wei ◽  
Ru Yan

Amoxapine has been demonstrated to be a potent inhibitor of Escherichia coli β-glucuronidase. This study aims to explore the factors causing unsatisfactory efficacy of amoxapine in alleviating CPT-11–induced gastrointestinal toxicity in mice and to predict the outcomes in humans. Amoxapine (100 µM) exhibited poor and varied inhibition on β-glucuronidase activity in gut microbiota from 10 healthy individuals and their pool (pool, 11.9%; individuals, 3.6%−54.4%) with IC50 >100 µM and potent inhibition toward E. coli β-glucuronidase (IC50 = 0.34 µM). p-Nitrophenol formation from p-nitrophenyl-β-D-glucuronide by pooled and individual gut microbiota fitted classical Michaelis-Menten kinetics, showing similar affinity (Km = 113–189 µM) but varied catalytic capability (Vmax = 53–556 nmol/h/mg). Interestingly, amoxapine showed distinct inhibitory effects (8.7%–100%) toward β-glucuronidases of 13 bacterial isolates (including four Enterococcus, three Streptococcus, two Escherichia, and two Staphylococcus strains; gus genes belonging to OTU1, 2 or 21) regardless of their genetic similarity or bacterial origin. In addition, amoxapine inhibited the growth of pooled and individual gut microbiota at a high concentration (6.3%–30.8%, 200 µM). Taken together, these findings partly explain the unsatisfactory efficacy of amoxapine in alleviating CPT-11–induced toxicity and predict a poor outcome of β-glucuronidase inhibition in humans, highlighting the necessity of using a human gut microbiota community for drug screening.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Douglas de Britto ◽  
Rejane Celi Goy ◽  
Sergio Paulo Campana Filho ◽  
Odilio B. G. Assis

Recently, increasing attention has been paid to water-soluble derivatives of chitosan at its applications. The chemical characteristics and the antimicrobial properties of these salts can play significant role in pharmacological and food areas mainly as carriers for drug delivery systems and as antimicrobial packaging materials. In the current paper, a historical sequence of the main preparative methods, physical chemistry aspects, and antimicrobial activity of chitosan quaternized derivatives are presented and briefly discussed. In general, the results indicated that the quaternary derivatives had better inhibitory effects than the unmodified chitosan.


2022 ◽  
Vol 162 ◽  
pp. 106566
Author(s):  
Yonghong Luo ◽  
Yang Wang ◽  
Changlei Xia ◽  
Awais Ahmad ◽  
Rui Yang ◽  
...  

2020 ◽  
Vol 159 ◽  
pp. 455-460 ◽  
Author(s):  
Limei Zhou ◽  
Pengcheng Ma ◽  
Ming Shuai ◽  
Jian Huang ◽  
Chengxin Sun ◽  
...  

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1159 ◽  
Author(s):  
Samira Tansaz ◽  
Raminder Singh ◽  
Iwona Cicha ◽  
Aldo Boccaccini

Novel composite hydrogels based on the combination of alginate (Alg), soy protein isolate (SPI) and bioactive glass (BG) nanoparticles were developed for soft tissue engineering. Human umbilical vein endothelial cells (HUVEC) and normal human dermal fibroblasts were cultivated on hydrogels for 7, 14 and 21 days. Cell morphology was visualized using fluorescent staining at Days 7 and 14 for fibroblast cells and Days 14 and 21 for HUVEC. Metabolic activity of cells was analyzed using a colorimetric assay (water soluble tetrazolium (WST) assay). Compared to pure Alg, Alg/SPI and Alg/SPI/BG provided superior surfaces for both types of cells, supporting their attachment, growth, spreading and metabolic activity. Fibroblasts showed better colonization and growth on Alg/SPI/BG hydrogels compared to Alg/SPI hydrogels. The results indicate that such novel composite hydrogels might find applications in soft tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document