Preparation and characterization of polylactic acid/fenugreek essential oil/curcumin composite films for food packaging applications

Author(s):  
S. Mohan ◽  
K. Panneerselvam
2012 ◽  
Vol 75 (12) ◽  
pp. 2234-2237 ◽  
Author(s):  
WEILI LI ◽  
LINSHU LIU ◽  
TONY Z. JIN

We evaluated the effects of storage and handling conditions on the antimicrobial activity of biodegradable composite films (polylactic acid and sugar beet pulp) coated with allyl isothiocyanate (AIT). Polylactic acid and chitosan were incorporated with AIT and used to coat one side of the film. The films were subjected to different storage conditions (storage time, storage temperature, and packed or unpacked) and handling conditions (washing, abrasion, and air blowing), and the antimicrobial activity of the films against Salmonella Stanley in tryptic soy broth was determined. The films (8.16 μl of AIT per cm2 of surface area) significantly (P < 0.05) inhibited the growth of Salmonella during 24 h of incubation at 22°C, while the populations of Salmonella in controls increased from ca. 4 to over 8 log CFU/ml, indicating a minimum inactivation of 4 log CFU/ml on films in comparison to the growth on controls. Statistical analyses indicated that storage time, storage temperature, and surface abrasion affected the antimicrobial activity of the films significantly (P < 0.05). However, the differences in microbial reduction between those conditions were less than 0.5 log cycle. The results suggest that the films' antimicrobial properties are stable under practical storage and handling conditions and that these antimicrobial films have potential applications in food packaging.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 936 ◽  
Author(s):  
Ting Liu ◽  
Jingfan Wang ◽  
Fumin Chi ◽  
Zhankun Tan ◽  
Liu Liu

The effects of fennel essential oil (FEO) and peppermint essential oil (PEO) on chitosan-based films were evaluated in this study. The results showed that the addition of FEO and PEO slightly increased the density and thickness, while significantly decreasing the moisture content, water swelling, and solubility properties. The color values (L, a, b, ΔE and whiteness index (WI)) of the composite films containing FEO and PEO changed obviously with a tendency toward yellowness, which was beneficial in resisting food decomposition caused by ultraviolet light. The differential scanning calorimetry (DSC) and fourier-transform-infrared (FTIR) results indicated that the addition of FEO and PEO affected the structure of the chitosan films, while the interaction between the chitosan and polyphenols in FEO and PEO established new hydrogen bonds and improved the thermal stability. The environmental scanning electron microscopy (ESEM) illustrated that the surfaces of the composite films containing FEO and PEO were smooth, but the cross-section was rougher than in pure chitosan film. Furthermore, the composite films containing FEO and PEO exhibited prominent antioxidant activity. In short, the novel active chitosan-based films with incorporated FEO and PEO present broad application prospects in fresh-cut meat or vegetable packaging.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Luyu Mei ◽  
Liuxin Shi ◽  
Xiuli Song ◽  
Su Liu ◽  
Qiang Cheng ◽  
...  

In this study, carboxymethyl cellulose (CMC) films containing 1%, 2%, and 3% Chinese fir essential oil (CFEO) were prepared. The mechanical, optical, physical, microstructural, thermal stability and antimicrobial properties of the films were studied. A traditional steam distillation method was applied for CFEO extraction, in which 35 volatile components were identified. The research results showed that the CMC film mixed with 1% CFEO had the highest tensile strength (TS) and elongation at break (EB), whereas the flexibility was decreased under higher concentrations of CFEO. However, the film’s degree of transparency under controlled humidity did not decrease with an increase in CFEO concentration; thus, the sensory evaluation was not adversely effect. Furthermore, the thickness and the water solubility (WS) of film increased after the addition of CFEO. The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results indicated that the thermal stability of the CMC-CFEO films improved. Moreover, the composite films showed excellent inhibitory effects toward Gram-positive bacterias and Penicillium citrinum. The treatments of grapes with CMC + 1% CFEO resulted in the best properties during storage. CMC-CFEO film can be a candidate for food packaging due to its excellent performances.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4019
Author(s):  
Teuku Rihayat ◽  
Agung Efriyo Hadi ◽  
Nurhanifa Aidy ◽  
Aida Safitri ◽  
Januar Parlaungan Siregar ◽  
...  

This study aims to produce and investigate the potential of biodegradable Polylactic Acid (PLA)-based composites mixed with chitosan and Turmeric Essential Oil (TEO) as an anti-microbial biomaterial. PLA has good barrier properties for moisture, so it is suitable for use as a raw material for making packaging and is included in the GRAS (Generally Recognized As Safe). Chitosan is a non-toxic and antibacterial cationic polysaccharide that needs to be improved in its ability to fight microbes. TEO must be added to increase antibacterial properties due to a large number of hydroxyl (-OH) and carbonyl functional groups. The samples were prepared in three different variations: 2 g of chitosan, 0 mL TEO and 0 mL glycerol (Biofilm 1), 3 g of chitosan, 0.3 mL TEO and 0.5 mL of glycerol (Biofilm 2), and 4 g of chitosan, 0.3 of TEO and 0.5 mL of glycerol (Biofilm 3). The final product was characterized by its functional group through Fourier transform infrared (FTIR); the functional groups contained by the addition of TEO are C-H, C=O, O-H, and N-H with the extraction method, and as indicated by the emergence of a wide band at 3503 cm−1, turmeric essential oil interacts with the polymer matrix by creating intermolecular hydrogen bonds between their terminal hydroxyl group and the carbonyl groups of the ester moieties of both PLA and Chitosan. Thermogravimetric analysis (TGA) of PLA as biofilms, the maximum temperature of a biofilm was observed at 315.74 °C in the variation of 4 g chitosan, 0.3 mL TEO, and 0.5 mL glycerol (Biofilm 3). Morphological conditions analyzed under scanning electron microscopy (SEM) showed that the addition of TEO inside the chitosan interlayer bound chitosan molecules to produce solid particles. Chitosan and TEO showed increased anti-bacterial activity in the anti-microbial test. Furthermore, after 12 days of exposure to open areas, the biofilms generated were able to resist S. aureus and E. coli bacteria.


2017 ◽  
Vol 1 (3) ◽  
pp. 149-156 ◽  
Author(s):  
H. Anuar ◽  
A. B. Nur Fatin Izzati ◽  
S. M. Sharifah Nurul Inani ◽  
M. A. Siti Nur E’zzati ◽  
A. B. Siti Munirah Salimah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document