Spallation damage mechanism of prefabricated elliptical holes by different transient incident waves in sandstones

2020 ◽  
Vol 146 ◽  
pp. 103716
Author(s):  
Ming Tao ◽  
Ao Ma ◽  
Rui Zhao ◽  
Sam S. Hashemi
Author(s):  
P.E. Champness ◽  
R.W. Devenish

It has long been recognised that silicates can suffer extensive beam damage in electron-beam instruments. The predominant damage mechanism is radiolysis. For instance, damage in quartz, SiO2, results in loss of structural order without mass loss whereas feldspars (framework silicates containing Ca, Na, K) suffer loss of structural order with accompanying mass loss. In the latter case, the alkali ions, particularly Na, are found to migrate away from the area of the beam. The aim of the present study was to investigate the loss of various elements from the common silicate structures during electron irradiation at 100 kV over a range of current densities of 104 - 109 A m−2. (The current density is defined in terms of 50% of total current in the FWHM probe). The silicates so far ivestigated are:- olivine [(Mg, Fe)SiO4], a structure that has isolated Si-O tetrahedra, garnet [(Mg, Ca, Fe)3Al2Si3AO12 another silicate with isolated tetrahedra, pyroxene [-Ca(Mg, Fe)Si2O6 a single-chain silicate; mica [margarite, -Ca2Al4Si4Al4O2O(OH)4], a sheet silicate, and plagioclase feldspar [-NaCaAl3Si5O16]. Ion- thinned samples of each mineral were examined in a VG Microscopes UHV HB501 field- emission STEM. The beam current used was typically - 0.5 nA and the current density was varied by defocussing the electron probe. Energy-dispersive X-ray spectra were collected every 10 seconds for a total of 200 seconds using a Link Systems windowless detector. The thickness of the samples in the area of analysis was normally 50-150 nm.


2014 ◽  
Vol 501-504 ◽  
pp. 1096-1103
Author(s):  
Hong Xiao Wu ◽  
Hao Zhe Xing ◽  
Zhi Fang Yan

The blast impact dynamic experiment of reinforced concrete rectangular plate with simply supported boundary conditions was performed using explosion pressure simulator. With 3-D FEM software LS-DYNA, the separate solid models of concrete and steel were established and 3-D FEM dynamic analysis of the experiment process was carried out. Compared calculation results to experiment results synthetically, the damage mechanism and failure characteristics of reinforced concrete plate under explosion impact loading condition were got and it is also verified that the H-J-C model can approximately simulate the concrete properties well under explosion impact loading condition.


Author(s):  
Yian Wang ◽  
Guoshan Xie ◽  
Zheng Zhang ◽  
Xiaolong Qian ◽  
Yufeng Zhou ◽  
...  

Temper embrittlement is a common damage mechanism of pressure vessels in the chemical and petrochemical industry serviced in high temperature, which results in the reduction of roughness due to metallurgical change in some low alloy steels. Pressure vessels that are temper embrittled may be susceptible to brittle fracture under certain operating conditions which cause high stress by thermal gradients, e.g., during start-up and shutdown. 2.25Cr1-Mo steel is widely used to make hydrogenation reactor due to its superior combination of high mechanical strength, good weldability, excellent high temperature hydrogen attack (HTHA) and oxidation-resistance. However, 2.25Cr-1Mo steel is particularly susceptible to temper embrittlement. In this paper, the effect of carbide on temper embrittlement of 2.25Cr-1Mo steel was investigated. Mechanical properties and the ductile-brittle transition temperature (DBTT) of 2.25Cr-1Mo steel were measured by tensile test and impact test. The tests were performed at two positions (base metal and weld metal) and three states (original, step cooling treated and in-service for a hundred thousand hours). The content and distribution of carbides were analyzed by scanning electron microscope (SEM). The content of Cr and Mo elements in carbide was measured by energy dispersive X-ray analysis (EDS). The results showed that the embrittlement could increase the strength and reduce the plasticity. Higher carbide contents appear to be responsible for the higher DBTT. The in-service 2.25Cr-1Mo steel showed the highest DBTT and carbide content, followed by step cooling treated 2.25Cr-1Mo steel, while the as-received 2.25Cr-1Mo steel has the minimum DBTT and carbide content. At the same time, the Cr and Mo contents in carbide increased with the increasing of DBTT. It is well known that the specimen analyzed by SEM is very small in size, sampling SEM specimen is convenient and nondestructive to pressure vessel. Therefore, the relationship between DBTT and the content of carbide offers a feasible nondestructive method for quantitative measuring the temper embrittlement of 2.25Cr-1Mo steel pressure vessel.


2021 ◽  
Vol 259 ◽  
pp. 113463
Author(s):  
Binbin Liao ◽  
Zhongwei Zhang ◽  
Liping Sun ◽  
Jianwu Zhou ◽  
Panding Wang ◽  
...  

Vacuum ◽  
2021 ◽  
pp. 110350
Author(s):  
Hulin Wu ◽  
Ping Gong ◽  
Suying Hu ◽  
Lin Xiang ◽  
Enlei Wang ◽  
...  

Author(s):  
Xiaojuan Tian ◽  
Yueting Zhou ◽  
Lihua Wang ◽  
Shenghu Ding

AbstractThe contact problem for thermoelectric materials with functionally graded properties is considered. The material properties, such as the electric conductivity, the thermal conductivity, the shear modulus, and the thermal expansion coefficient, vary in an exponential function. Using the Fourier transform technique, the electro-thermo-elastic problems are transformed into three sets of singular integral equations which are solved numerically in terms of the unknown normal electric current density, the normal energy flux, and the contact pressure. Meanwhile, the complex homogeneous solutions of the displacement fields caused by the gradient parameters are simplified with the help of Euler’s formula. After addressing the non-linearity excited by thermoelectric effects, the particular solutions of the displacement fields can be assessed. The effects of various combinations of material gradient parameters and thermoelectric loads on the contact behaviors of thermoelectric materials are presented. The results give a deep insight into the contact damage mechanism of functionally graded thermoelectric materials (FGTEMs).


Sign in / Sign up

Export Citation Format

Share Document