Physical stability of amorphous pharmaceutical solids: Nucleation, crystal growth, phase separation and effects of the polymers

2020 ◽  
Vol 590 ◽  
pp. 119925
Author(s):  
Qin Shi ◽  
Fang Li ◽  
Stacy Yeh ◽  
Yanan Wang ◽  
Junbo Xin
2021 ◽  
Vol 54 (5) ◽  
Author(s):  
Qin Shi ◽  
Fang Li ◽  
Jia Xu ◽  
Lingling Wu ◽  
Junbo Xin ◽  
...  

Physical stability is one of the main challenges when developing robust amorphous pharmaceutical formulations. This article reports fast crystal growth behaviors of the γ and α forms of indomethacin (IMC) initiated by bubbles in the interior of a supercooled liquid. Bubble-induced crystal growth of γ-IMC exhibits approximately the same kinetics as its surface crystal growth, supporting the view that bubble-induced crystal growth is a surface-facilitated process. In contrast, the rates of bubble-induced crystal growth of α-IMC are much faster than those of its surface crystal growth. These results indicate that the bubble-induced crystal growth not only depends on the interface created by the bubble but also strongly correlates with the true cavitation of the bubble. Moreover, bubble-induced fast crystal growth of γ- and α-IMC can be terminated at different temperatures by cooling. These outcomes are meaningful for the in-depth understanding of physical stability and pre-formulation study of amorphous pharmaceutical solids showing surface-facilitated crystal growth.


2000 ◽  
Vol 341-348 ◽  
pp. 603-604 ◽  
Author(s):  
Y. Yamada ◽  
T. Miura ◽  
Y. Koike ◽  
I. Hirabayashi ◽  
H. Ikuta ◽  
...  

1999 ◽  
Vol 14 (9) ◽  
pp. 3653-3662 ◽  
Author(s):  
K. L. Lee ◽  
H. W. Kui

Three different kinds of morphology are found in undercooled Pd80Si20, and they dominate at different undercooling regimens ΔT, defined as ΔT = T1 – Tk, where T1 is the liquidus of Pd80Si20 and Tk is the kinetic crystallization temperature. In the small undercooling regimen, i.e., for ΔT ≤ 190 K, the microstructures are typically dendritic precipitation with a eutecticlike background. In the intermediate undercooling regimen, i.e., for 190 ≤ ΔT ≤ 220 K, spherical morphologies, which arise from nucleation and growth, are identified. In addition, Pd particles are found throughout an entire undercooled specimen. In the large undercooling regimen, i.e., for ΔT ≥ 220 K, a connected structure composed of two subnetworks is found. A sharp decrease in the dimension of the microstructures occurs from the intermediate to the large undercooling regimen. Although the crystalline phases in the intermediate and the large undercooling regimens are the same, the crystal growth rate is too slow to bring about the occurrence of grain refinement. Combining the morphologies observed in the three undercooling regimens and their crystallization behaviors, we conclude that phase separation takes place in undercooled molten Pd80Si20.


2012 ◽  
Vol 14 (3) ◽  
pp. 380-388 ◽  
Author(s):  
Ye Sun ◽  
Lei Zhu ◽  
Tian Wu ◽  
Ting Cai ◽  
Erica M. Gunn ◽  
...  

2017 ◽  
Vol 1 (1) ◽  
pp. 31
Author(s):  
Supomo Supomo ◽  
Yullia Sukawati ◽  
Fredi Basyar

Chitosan has been widely used in industrial, food, pharmaceuticals and agriculture. Chitosan is a natural biocompatible polymers means that as nature does not have the side effect, non-toxic, can not be easily digested and broken down by microbes (biodegradable). This study aims to determine whether the chitosan may be formulated into dosage gel hand sanitizer that meets the requirements of the physical stability of the gel.Chitosan is formulated with 3 varying concentrations of Na CMC basis of 3%, 4.5% and 6%. Tests conducted gel formulation is the physical stability test which includes organoleptic test, homogeneity, pH test, test dispersive power, viscosity test and test consistency. Testing is done every week for 4 weeks of storage.Results of testing physical properties of chitosan gel hand sanitizer has the shape and color stable but the resulting aroma change during storage. pH gel meet the requirements, the consistency test of phase separation does not occur, the homogeneity test showed no homogeneous gel, gel dispersive power does not meet the requirements, the viscosity of the gel preparation third formula does not meet the requirements of viscosity gel


2008 ◽  
Vol 1072 ◽  
Author(s):  
Bart J. Kooi ◽  
Ramanathaswamy Pandian ◽  
Jeff Th. M. De Hosson

ABSTRACTIsothermal crystallization of doped SbxTe fast-growth phase-change films was investigated using transmission electron microscopy with in situ heating. SbxTe films with four different values for the Sb/Te ratio, x=3.0, 3.3, 3.6 and 4.2, were analyzed and the films were sandwiched between two types of dielectric layers. One dielectric layer type is based on 80at.%ZnS-20at.%SiO2, the other on (Ge,Cr)N. The crystal growth rates reduce if the phase-change films are sandwiched between amorphous dielectric layers. The reduction is very pronounced at the lowest measured temperatures (150 °C), becomes smaller at higher temperatures and probably disappears at around 200 °C. The crystal growth rates increase with increasing Sb/Te ratio, but the activation energy for crystal growth is not significantly affected by the Sb/Te ratio. Finally a systematic study of the effect of the electron beam of the TEM on the crystal growth rates is performed showing accelerated growth rates. The present work shows that particularly at relative low temperatures, just above the glass-transition temperature, the growth rates as limited by the atomic mobilities are sensitive to various (boundary) conditions, e.g. capping layers and irradiation.


2014 ◽  
Vol 1688 ◽  
Author(s):  
Min S. Wang ◽  
Amol Chaudhari ◽  
Yuanjie Pan ◽  
Stephen Young ◽  
Nitin Nitin

ABSTRACTThe goal of this study was to determine the potential use of starch Pickering emulsion as a vehicle to deliver a natural phenolic compound, curcumin in the oral cavity. To this end, an oil-in-water (o/w) emulsion was prepared using starch molecules as the stabilizer/emulsifier. The physical stability, oxygen permeability and release of curcumin from the starch Pickering emulsion in simulated saliva fluid (SSF) were determined. The results of this study showed that the starch stabilized o/w emulsions were stable for up to 2 weeks. The starch Pickering emulsion also provided better protection against oxidation than a surfactant-stabilized emulsion, and the digestion of the starch Pickering emulsion using amylase led to the complete disruption and phase separation of the emulsion.


Sign in / Sign up

Export Citation Format

Share Document