Experimental study and suggested mathematical model for chloride-induced reinforcement corrosion rate

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 2014-2029
Author(s):  
Pei-Yuan Lun ◽  
Zhao-Hui Lu ◽  
Xiao-gang Zhang ◽  
Qiang Zhang ◽  
Ran Zhao
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiao-Chun Lu ◽  
Bin Guan ◽  
Bo-Fu Chen ◽  
Xin Zhang ◽  
Bo-bo Xiong

The existing studies of the corrosion of reinforced concrete have mainly focused on the interface area and chemical ion erosion, ignoring the specific service environment of the reinforced concrete. In this study, the effect of freeze-thaw damage was investigated via corrosion experiments under different freeze-thaw cycle conditions. Steel reinforcement corrosion mass, ultimate pull-out force, corrosion rate, and bond slippage were chosen as characteristic parameters in the experiments, and scanning electron microscopy (SEM) analysis was used to explain the mechanism of action of freeze-thaw damage on corrosion. The results showed that, under identical corrosion conditions, the mass of steel reinforcement corrosion and corrosion rate increased by 39.6% and 39.7% when comparing 200 freeze-thaw cycles to 0 cycles, respectively. The ultimate pull-out force and bond slippage after 200 freeze-thaw cycles decreased by 73% and 31%, respectively, compared with 0 freeze-thaw cycles. In addition, SEM analysis indicated that microstructure damage caused by freeze-thaw cycles accelerated the corrosion reaction and decreased cementitious properties, leading to decreasing ultimate pull-out force and bond slippage. The effect of freeze-thaw cycles and steel reinforcement corrosion on the macro mechanical properties of concrete is not a simple superposition.


2019 ◽  
Vol 298 ◽  
pp. 00134
Author(s):  
Zhanna Tikhonova ◽  
Evgeniy Frolov ◽  
Dmitriy Krainev ◽  
Alexander Plotnikov

The article is devoted to the description of the experimental research method when developing a mathematical model for calculating the cutting speed based on information from the cutting zone obtained during the test run in the process of turning using steel coated tools as an example. This paper also presents the results of an experimental study which prove the effectiveness of applying the obtained mathematical dependence.


2014 ◽  
Vol 61 (3) ◽  
pp. 158-165 ◽  
Author(s):  
Shamsad Ahmad

Purpose – The purpose of this paper was to explore the possibility of establishing an empirical correlation between concrete resistivity and reinforcement corrosion rate utilizing the experimental data generated by measuring corrosion current density of reinforced concrete specimens subjected to chloride-induced corrosion at different levels of concrete resistivity. Design/methodology/approach – To generate concrete resistivity vs corrosion current density data in a wide range, ten reinforced concrete specimens were prepared and allowed to corrode under severe chloride exposure. After significantly corroding the specimens, they were removed from the chloride exposure and were subjected to different moisture levels for achieving variation in the resistivity of concrete so that reasonably good number of resistivity vs corrosion rate data can be obtained. Resistivity and corrosion current density tests were conducted for all the ten specimens and their values were measured in wide ranges of 0.8-65 kΩ·cm and 0.08-11 μA/cm2, respectively. Findings – Data generated through this study were utilized to obtain an empirical relationship between concrete resistivity and corrosion current density. The trend of results obtained using the empirical correlation model developed in the present study was in close agreement with that obtained using a theoretical model reported in literature. Originality/value – The empirical correlation between concrete resistivity and reinforcement corrosion rate obtained under this work can be used for evaluation of reinforcement corrosion utilizing the resistivity values measured non-destructively.


2013 ◽  
Vol 664 ◽  
pp. 817-820 ◽  
Author(s):  
Ji Gao ◽  
Di Wang ◽  
Yao Sun

This article using the method of orthogonal test analysis the law of honeycomb ring part in aero-engineer surface discharge mark diameter by EDG. In the impulse voltage under certain conditions,by changing the peak current and pulse width in the interelectrode study both of the impact of the largest diameter of GH3536 surface discharge mark, and build a mathematical model of the regression equation, derive relatively accurate empirical formula. Provide a good reference and guidance for the actual production of the EDG.


Author(s):  
Ange Lu ◽  
Qiucheng Ma ◽  
Jie Ma

The lotus plumule has high medicinal value and is an important part of the lotus seed. Usually, the lotus seed must be split symmetrically into two halves through a splitting process to obtain an intact lotus plumule. However, this process is difficult to mechanize and automate, as different lotus seeds are of different sizes. In this study, a novel automatic self-adaptive splitting technology (SAST) is proposed for lotus seeds, based on a specially designed combined linkage mechanism and a roller pair centering mechanism. The technology can automatically adjust the position of the splitting point taper punch according to the size of the lotus seed and ensure that the tip of the punch is on the axis of the lotus seed. First, the centering deviation of the centering mechanism was analyzed. A mathematical model for the SAST was developed, and the key parameters were optimized using the firefly algorithm. An automatic splitting machine and a test bench were designed for centering deviation measurements, and both centering and splitting experiments were conducted. The generated maximum centering deviation of the SAST was <0.176 mm; the highest accurate splitting rates of 95% and 93.05% were achieved for unclassified and graded lotus seeds, respectively.


Sign in / Sign up

Export Citation Format

Share Document