Superlubrication obtained with mixtures of hydrated ions and polyethylene glycol solutions in the mixed and hydrodynamic lubrication regimes

2020 ◽  
Vol 579 ◽  
pp. 479-488
Author(s):  
Tianyi Han ◽  
Shuang Yi ◽  
Chenhui Zhang ◽  
Jinjin Li ◽  
Xinchun Chen ◽  
...  
Author(s):  
Luca Bertocchi ◽  
Matteo Giacopini ◽  
Daniele Dini

In the present paper, the algorithm proposed by Giacopini et. al. [1], based on a mass-conserving formulation of the Reynolds equation using the concept of complementarity is suitably extended to include the effects of compressibility, piezoviscosity and shear-thinning on the lubricant properties. This improved algorithm is employed to analyse the performance of the lubricated small end and big end bearings of a connecting rod of a high performance motorbike engine. The application of the algorithm proposed to both the small end and the big end of a con-rod is challenging because of the different causes that sustain the hydrodynamic lubrication in the two cases. In the con-rod big end, the fluid film is mainly generated by the relative high speed rotation between the rod and the crankshaft. The relative speed between the two races forms a wedge of fluid that assures appropriate lubrication and avoids undesired direct contacts. On the contrary, at the con-rod small end the relative rotational speed is low and a complete rotation between the mating surfaces does not occurs since the con-rod only oscillates around its vertical axis. Thus, at every revolution of the crankshaft, there are two different moments in which the relative rotational speed between the con-rod and the piston pin is null. Therefore, the dominant effect in the lubrication is the squeeze caused by the high loads transmitted through the piston pin. In particular both combustion forces and inertial forces contribute to the squeeze effect. This work shows how the formulation developed by the authors is capable of predicting the performance of journal bearings in the unsteady regime, where cavitation and reformation occur several times. Moreover, the effects of the pressure and the shear rate on the density and on the viscosity of the lubricant are taken into account.


2021 ◽  
Vol 88 (6) ◽  
Author(s):  
Alejandro Roda-Buch ◽  
Valentine A. M. Magnin ◽  
Sandra Guadalupe Maldonado ◽  
Stefano Mischler

Abstract The lubrication regimes of a contact pair escapement-ruby pallet of a Swiss lever escapement have been investigated combining the theory of fluid lubrication with a well-established kinematic and inverse dynamic multibody model. The kinematic analytical results have been confronted with experimental measurements. The developed model allows to easily obtain, for the three operating phases of the Swiss lever escapement, the relative speed and the contact forces and, by considering a hydrodynamic lubrication regime, the lubricant minimum film thickness and the coefficient of friction. The presented formulation allows to study the influence of crucial technical parameters in the Swiss lever escapement lubrication. The spout radii of curvature have been identified as the optimal parameters to control the lubrication regimes in the pallet/escapement contacts. In that sense, an interesting result is that the lubrication regime moves away from the boundary lubrication by increasing these radii.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Christophe Minet ◽  
Noël Brunetière ◽  
Bernard Tournerie

Mechanical seals are commonly used in industrial applications. The main purpose of these components is to ensure the sealing of rotating shafts. Their optimal point of operation is obtained at the boundary between the mixed and hydrodynamic lubrication regimes. However, papers focused on this particular aspect in face seals are rather scarce compared with those dealing with other popular sealing devices. The present study thus proposes a numerical flow model of mixed lubrication in mechanical face seals. It achieves this by evaluating the influence of roughness on the performance of the seal. The choice of a deterministic approach has been made, this being justified by a review of the literature. A numerical model for the generation of random rough surfaces has been used prior to the flow model in order to give an accurate description of the surface roughness. The model takes cavitation effects into account and considers Hertzian asperity contact. Results for the model, including Stribeck curves, are presented as a function of the duty parameter.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
John Fabricius ◽  
Afonso Tsandzana ◽  
Francesc Perez-Rafols ◽  
Peter Wall

This work relates to previous studies concerning the asymptotic behavior of Stokes flow in a narrow gap between two surfaces in relative motion. It is assumed that one of the surfaces is rough, with small roughness wavelength μ, so that the film thickness h becomes rapidly oscillating. Depending on the limit of the ratio h/μ, denoted as λ, three different lubrication regimes exist: Reynolds roughness (λ = 0), Stokes roughness (0 < λ < ∞), and high-frequency roughness (λ = ∞). In each regime, the pressure field is governed by a generalized Reynolds equation, whose coefficients (so-called flow factors) depend on λ. To investigate the accuracy and applicability of the limit regimes, we compute the Stokes flow factors for various roughness patterns by varying the parameter λ. The results show that there are realistic surface textures for which the Reynolds roughness is not accurate and the Stokes roughness must be used instead.


Author(s):  
Andys Hernández-Peña ◽  
Leonardo I Farfan-Cabrera ◽  
Ezequiel A Gallardo-Hernández

Ideally, engine journal bearings are expected to operate under hydrodynamic lubrication regime to limit wear and promote minimal friction by sliding. Nevertheless, engine journal bearings fail since wear caused by severe conditions in actual engine operation, such as start/stop, misalignment, lubricant degradation, overheating, and debris contamination, producing a transition from hydrodynamic to mixed and boundary lubrication regimes and wear increased in both engine journal bearings and crankshaft. Thus, this work aims to study the influence of boundary lubrication, engine mineral oil aging, and debris contamination on wear of engine journal bearings. An adapted microscale abrasion tester using a ball-on-concave flat configuration was used to reproduce boundary lubrication under controlled conditions. Steel balls having a similar surface than crankshafts and concave flat samples cut from actual engine journal bearings were tested. The tests were run under boundary lubrication at a constant load, speed, and sliding distance at 26 ℃ and 100 ℃ using separately clean fresh and aged engine mineral oil, and then, tests were conducted using the oils contaminated with hard abrasive particles. The engine mineral oil was degraded by a laboratory aging process approaching oxidation of an engine mineral oil used in actual use conditions. Oxidation, additives depletion and changes in viscosity were evaluated. The wear volumes and scar morphologies of engine journal bearing samples were analyzed. The results suggested that high temperature was the main contributor for wear increase in engine journal bearings, while oil aging and debris did not influence considerably on the wear. However, the oils contaminated with hard particles produced a wear decrease in engine journal bearing samples but increased wear in rotary balls.


1990 ◽  
Vol 112 (1) ◽  
pp. 147-152 ◽  
Author(s):  
D. P. Hess ◽  
A. Soom

Although many contacts operate under unsteady loading and sliding conditions, friction behavior under such conditions is still not well understood. In this paper we report on a series of experiments that were run to examine friction-velocity characteristics of line contacts operating under unsteady sliding velocities in the mixed, elastohydrodynamic and hydrodynamic lubrication regimes. A periodic, time-varying velocity component was superimposed on a steady sliding speed in such a way that all three lubrication regimes could be covered in a cycle. It was found that as the frequency of oscillation was increased, a multi-valued friction coefficient appeared as a loop about the average (steady state) friction-velocity relation. It is shown that this behavior can be modeled by a characteristic time lag between a changing velocity and the corresponding steady state friction. The latter is described by a single equation that was matched to measured average friction data. In the mixed lubrication regime, which is where this lag most significantly affects friction behavior, the lag time increases with normal load and lubricant viscosity. It is shown that the time shift is not associated with a fixed characteristic distance. The observed delay arises due to entrainment and normal approach, which includes squeeze-films combined with rough surface contact deformations.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Wei Dai ◽  
Kyungjun Lee ◽  
Alexander M. Sinyukov ◽  
Hong Liang

In this research, rheological and tribological performance of additive V2O5 nanoparticles in a light mineral oil has been investigated. For rheological performance, the addition of 0.2 wt. % V2O5 could reduce the viscosity of the base oil for 6%. Considering the overall friction reduction in boundary, mixed, and hydrodynamic lubrication regimes, that with 0.1 wt. % V2O5 exhibited the best effect. Friction coefficient of base oil could be reduced by 33%. In terms of wear, the addition of 0.2 wt. % V2O5 showed the lowest wear rate, which is 44% reduction compared to base oil. Through Raman spectrum and energy dispersive spectroscopy (EDS) analysis, it was found that V2O5 involved tribochemical reaction during rubbing. Vanadium intermetallic alloy (V–Fe–Cr) was found to enhance the antiwear performance. This research revealed that V2O5 nanoparticles could be an effective additive to improve tribological performance.


1997 ◽  
Vol 119 (4) ◽  
pp. 808-816 ◽  
Author(s):  
Naeim A. Henein ◽  
Shengqiang Huang ◽  
Walter Bryzik

A new approach is developed to determine piston-ring assembly lubrication regimes from the instantaneous frictional torque measured for the whole engine. This is based on the variation of the friction coefficient with the duty parameter in the Stribeck diagram over the mixed and hydrodynamic lubrication regimes. The derived equation determines the lubrication regimes from the slope of the line in the Stribeck diagram. A single cylinder spark ignition engine was instrumented to determine the total instantaneous frictional torque of the engine. Experiments were conducted under different loads at a constant speed. Results show that the regime is mixed lubrication near the top dead center (TDC) and shifts to the hydrodynamic lubrication regime as the piston moves away from TDC. The extent of the mixed lubrication regime depends on engine load and speed.


2003 ◽  
Vol 767 ◽  
Author(s):  
Ara Philipossian ◽  
Scott Olsen

AbstractReal-time coefficient of friction (COF) analysis is used to determine the extent of normal and shear forces during CMP and identify the lubrication regimes associated with the process. Pads with different surface textures and slurries with varying abrasive concentrations are used to polish ILD films over a wide range of operating parameters. Results show that by varying abrasive concentration and pad surface texture, one can cause the process tribology to change from ‘boundary lubrication’ to ‘partial lubrication’, to ‘hydrodynamic lubrication’. A two-phase model relating average coefficient of friction and Preston's constant is presented. At abrasive concentrations up to 9 percent, material removal is proportional to the extent of contact between the abrasives and the wafer. At abrasive concentrations between 9 to 25 percent, removal rate is directly influenced by average COF. A new parameter termed the ‘tribological mechanism indicator’ is defined and extracted from the data, which coupled with the information on COF and ILD removal rate, results in a series of ‘universal’ correlations. A qualitative model based on pad storage modulus is used to explain the trends.


2014 ◽  
Vol 966-967 ◽  
pp. 120-125 ◽  
Author(s):  
Cédric Hubert ◽  
Krzysztof J. Kubiak ◽  
Maxence Bigerelle ◽  
Laurent Dubar

This paper proposes a new method of 3D roughness peaks curvature radius calculation and its application to tribological contact analysis as a characteristic signature of tribological contact. This method is introduced through the classical approach of calculation of radius of asperity in 2D. Actually, the proposed approach provides a generalization of Nowicki's method [], depending on horizontal lines intercepting the studied profile. Here, the basic idea consists in intercepting the rough surface by a horizontal plane and to calculate the cross section area without including “islands into islands”, i.e. the small peaks enclosed in bigger ones. Then, taking into account the maximal value of the height amplitude of the roughness included into this area, an appropriate algorithm is proposed, without requiring the classical hypothesis of derivability, which may be unstable when applied to engineering surfaces. This methodology is validated on simulated surfaces, and applied to engineering surfaces created experimentally, with a laboratory aluminium strip drawing process. The regions of the textured and lubricated specimens surface are analysed, and the results gives interesting prospects to qualitatively identify the local lubrication regimes: regions with high curvature radii correspond to severe contact (boundary/mixed lubrication regime) while regions with low curvature radii correspond to hydrodynamic lubrication regime.


Sign in / Sign up

Export Citation Format

Share Document