Effects of Vanadium Oxide Nanoparticles on Friction and Wear Reduction

2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Wei Dai ◽  
Kyungjun Lee ◽  
Alexander M. Sinyukov ◽  
Hong Liang

In this research, rheological and tribological performance of additive V2O5 nanoparticles in a light mineral oil has been investigated. For rheological performance, the addition of 0.2 wt. % V2O5 could reduce the viscosity of the base oil for 6%. Considering the overall friction reduction in boundary, mixed, and hydrodynamic lubrication regimes, that with 0.1 wt. % V2O5 exhibited the best effect. Friction coefficient of base oil could be reduced by 33%. In terms of wear, the addition of 0.2 wt. % V2O5 showed the lowest wear rate, which is 44% reduction compared to base oil. Through Raman spectrum and energy dispersive spectroscopy (EDS) analysis, it was found that V2O5 involved tribochemical reaction during rubbing. Vanadium intermetallic alloy (V–Fe–Cr) was found to enhance the antiwear performance. This research revealed that V2O5 nanoparticles could be an effective additive to improve tribological performance.

2007 ◽  
Vol 129 (4) ◽  
pp. 913-919 ◽  
Author(s):  
Xun Fu ◽  
Xiaodong Zhou ◽  
Huaqiang Shi ◽  
Danmei Wu ◽  
Zhengshui Hu

The tribological properties of MoS2 microsized spheres (MS-MoS2) with diameter of 0.5–3μm modified by self-prepared surfactant quaternary ammonium salt of 2-undecyl-1-dithioureido-ethyl-imidazoline (SUDEI) as an additive in base oil 500 SN were investigated and compared with those of commercial colloidal MoS2(CC-MoS2) on a four-ball tester and an Optimol SRV oscillating friction and wear tester in a ball-on-disk contact configuration. The worn surfaces of the bottom flat disk were examined with scanning electron microscopy and X-ray photoelectron spectroscopy. It was found that the MoS2 microsized spheres product was a much better extreme-pressure additive and antiwear and friction-reduction additive in 500 SN than commercial colloidal MoS2(CC-MoS2). Under the appropriate concentration of 0.1% and 0.25% for MS-MoS2 and CC-MoS2 and the load of 400N, the friction coefficient of MS-MoS2/oil and CC-MoS2/oil decreased about 25.0% and 12.5% and the wear volume loss decreased about 50.4% and 12.9% compared with the pure base stock. The boundary lubrication mechanism could be deduced as the effective chemical adsorption film formed by the long chain alkyl (C11H23) and active elements (S and N) in the surfactant SUDEI and tribochemical reaction film composed of the tribochemical reaction products.


2021 ◽  
Vol 943 (1) ◽  
pp. 012012
Author(s):  
K P Ng ◽  
K W Liew ◽  
E Lim

Abstract Sustainable energy such as wind turbine is known as a green technology that minimize the carbon emission into environment. However, unwanted friction and wear in journal bearing of a wind turbine’s gearbox leads to reduction of power efficiency and increase the reliance onto fossil-fuel powered electricity. Lubricating oils are used in journal bearing to provide the hydrodynamic lubrication film. However, commercially available lubricants are petroleum-based, which are non-replenishable and toxic. Thus, the bio-degradable vegetable oil, high oleic palm oil-based methyl ester (high oleic POME) was used as a base oil synthesized with graphene nanoplatelets (GNP), multi-walled carbon nanotubes (MWCNT) and nanostructured graphite (NSG), respectively, to enhance the friction and wear reduction. The tribological performance of each type of bio-based graphene-oil nanofluid was studied using pin-on-ring tribo-tester. It is concluded that NSG in high oleic POME shows 52.03% friction coefficient reduction and 59.27% pin specimen weight loss reduction. With this significant friction and wear reduction, power efficiency of wind turbine will be improved significantly. Thus, the reliance of society depending on fossil-fuel powered electricity can be reduced and minimize the carbon emission into the environment.


Author(s):  
Wenyang Zhang ◽  
Muhammad P. Jahan ◽  
Ajay P. Malshe

MoS2 multi-component nanolubrication system showed significant friction and wear reduction (more than 30% in friction reduction and 50% in wear reduction) in sliding steel surfaces, especially under mixed and boundary lubrication conditions [1–3]. It is believed that the formation of tribofilms in MoS2 multi-component nanolubrication system under different lubrication regimes is the primary reason for reduced friction and wear. To investigate the in-depth science of the tribo-chemical interface formed by MoS2 multicomponent nanolubrication system, it is necessary to study the chemical states of tribofilm during its evolution (generation ↔ regeneration) process at tribo-interfaces. Tribofilms from various lubrication regimes were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), Raman microscope, and X-ray photoelectron spectroscopy (XPS) techniques to study the morphology, chemical composition, elemental distribution, and chemical bonding of tribo-chemical surface, respectively. Besides the evolution process, the characterization of tribofilms also reveals the possibility of forming new meta-stable phases (chemical compounds) after tribological testing. Patchy tribofilms and progressive tribofilms have been observed from the SEM analysis and the EDX results showed existence of Mo-S-P as the composition of tribo-chemical films. The Raman spectroscopy analysis of tribofilms showed significant difference (such as formation of poly-molybdates) in chemical information of nanolubricants and tribofilms, which is an indication of the formation of friction polymer [4–5]. Additionally, phosphates and oxides, acting as components of surface protecting layer of tribofilms, have been found on surface by XPS technique. Moreover, MoS2 nanoparticles are found to navigate into surface asperities to protect the contacting surfaces. The results (information about the chemical states of the tribofilm) obtained from different characterization techniques can be used to explain the mechanism of friction and wear reduction associated with MoS2 multi-component nanolubrication system that has been reported in the literature.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 732
Author(s):  
Yeoh Jun Jie Jason ◽  
Heoy Geok How ◽  
Yew Heng Teoh ◽  
Farooq Sher ◽  
Hun Guan Chuah ◽  
...  

This study investigated the tribological behaviour of Pongamia oil (PO) and 15W–40 mineral engine oil (MO) with and without the addition of graphene nanoplatelets (GNPs). The friction and wear characteristics were evaluated in four-ball anti-wear tests according to the ASTM D4172 standard. The morphology of worn surfaces and the lubrication mechanism of GNPs were investigated via SEM and EDS. This study also focuses on the tribological effect of GNP concentration at various concentrations. The addition of 0.05 wt % GNPs in PO and MO exhibits the lowest friction and wear with 17.5% and 12.24% friction reduction, respectively, and 11.96% and 5.14% wear reduction, respectively. Through SEM and EDS surface analysis, the surface enhancement on the worn surface by the polishing effect of GNPs was confirmed. The deposition of GNPs on the friction surface and the formation of a protective film prevent the interacting surfaces from rubbing, resulting in friction and wear reduction.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Wang Li-jun ◽  
Guo Chu-wen ◽  
Ryuichiro Yamane

The synthesis and application of nanometer-sized particles have received considerable attention in recent years because of their different physical and chemical properties from those of the bulk materials or individual molecules; however, few experimental investigations on the tribological properties of lubricating oils with and without nanoferromagnetic particles have been performed. This work investigates the tribological properties of Mn0.78Zn0.22Fe2O4 nanoferromagnetic as additive in 46# turbine oil using a four-ball friction and wear tester. It is shown that the 46# turbine oil containing Mn0.78Zn0.22Fe2O4 nanoparticles has much better friction reduction and antiwear abilities than the base oil. The 46# turbine oil doped with 6wt%Mn0.78Zn0.22Fe2O4 nanoparticles show the best tribological properties among the tested oil samples, and PB value is increased by 26%, and the decreasing percentage of wear scar diameter is 25.45% compared to base oil.


2019 ◽  
Vol 71 (4) ◽  
pp. 515-524 ◽  
Author(s):  
Venkateswara Babu P. ◽  
Ismail Syed ◽  
Satish Ben Beera

Purpose In an internal combustion engine, piston ring-cylinder liner tribo pair is one among the most critical rubbing pairs. Most of the energy produced by an internal combustion engine is dissipated as frictional losses of which major portion is contributed by the piston ring-cylinder liner tribo pair. Hence, proper design of tribological parameters of piston ring-cylinder liner pair is essential and can effectively reduce the friction and wear, thereby improving the tribological performance of the engine. This paper aims to use surface texturing, an effective and feasible method, to improve the tribological performance of piston ring-cylinder liner tribo pair. Design/methodology/approach In this paper, influence of positive texturing (protruding) on friction reduction and wear resistance of piston ring surfaces was studied. The square-shaped positive textures were fabricated on piston ring surface by chemical etching method, and the experiments were conducted with textured piston ring surfaces against un-textured cylinder liner surface on pin-on-disc apparatus by continuous supply of lubricant at the inlet of contact zone. The parameters varied in this study are area density and normal load at a constant sliding speed. A comparison was made between the tribological properties of textured and un-textured piston ring surfaces. Findings From the experimental results, the tribological performance of the textured piston ring-cylinder liner tribo pair was significantly improved over a un-textured tribo pair. A maximum friction reduction of 67.6 per cent and wear resistance of 81.6 per cent were observed with textured ring surfaces as compared to un-textured ring surfaces. Originality/value This experimental study is helpful for better understanding of the potency of positive texturing on friction reduction and wear resistance of piston ring-cylinder liner tribo pair under lubricated sliding conditions.


2016 ◽  
Vol 113 (6) ◽  
pp. 1528-1533 ◽  
Author(s):  
Xuan Dou ◽  
Andrew R. Koltonow ◽  
Xingliang He ◽  
Hee Dong Jang ◽  
Qian Wang ◽  
...  

Ultrafine particles are often used as lubricant additives because they are capable of entering tribological contacts to reduce friction and protect surfaces from wear. They tend to be more stable than molecular additives under high thermal and mechanical stresses during rubbing. It is highly desirable for these particles to remain well dispersed in oil without relying on molecular ligands. Borrowing from the analogy that pieces of paper that are crumpled do not readily stick to each other (unlike flat sheets), we expect that ultrafine particles resembling miniaturized crumpled paper balls should self-disperse in oil and could act like nanoscale ball bearings to reduce friction and wear. Here we report the use of crumpled graphene balls as a high-performance additive that can significantly improve the lubrication properties of polyalphaolefin base oil. The tribological performance of crumpled graphene balls is only weakly dependent on their concentration in oil and readily exceeds that of other carbon additives such as graphite, reduced graphene oxide, and carbon black. Notably, polyalphaolefin base oil with only 0.01–0.1 wt % of crumpled graphene balls outperforms a fully formulated commercial lubricant in terms of friction and wear reduction.


Author(s):  
A. Hernandez Battez ◽  
J. L. Viesca Rodriguez ◽  
R. Gonzalez Rodriguez ◽  
J. E. Fernandez Rico

Nanofluids, a term proposed by Choi in 1995 [1], are composites consisting of solid nanoparticles with sizes varying generally from 1 to 100 nm dispersed in a liquid. Numerous nanoparticles used as oil additives have been investigated in recent years [2–7]. Results show that they deposit on the rubbing surface and improve the tribological properties of the base oil, displaying good friction and wear reduction characteristics even at concentrations below 2%wt.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2427 ◽  
Author(s):  
Wei Tang ◽  
Rui Liu ◽  
Xiangyong Lu ◽  
Shaogang Zhang ◽  
Songyong Liu

In this study, the tribological behavior of lamellar MoO3 as a lubricant additive was investigated under different concentrations, particle sizes, normal loads, velocity, and temperature. The friction and wear tests were performed using a tribometer and with a reciprocating motion. The results indicate that the friction-reducing ability and antiwear property of the base oil can be improved effectively with the addition of lamellar MoO3. The 0.5 wt % and 0.1 wt % concentrations of MoO3 yield the best antifriction and antiwear effects, respectively. The maximum friction and wear reduction is 19.8% and 55.9%, compared with that of the base oil. It is also found the MoO3 additive can decrease the friction considerably under a high velocity and normal load, and increase the working temperature. The smaller the size of MoO3, the better the friction-reducing effect the lamellar MoO3 shows. The friction-reducing and antiwear mechanisms of lamellar MoO3 were discussed.


Sign in / Sign up

Export Citation Format

Share Document