Periosteal distraction osteogenesis versus immediate periosteal elevation in a rat model: Histological and micro-CT analysis

2017 ◽  
Vol 45 (5) ◽  
pp. 620-627 ◽  
Author(s):  
Ken Nakahara ◽  
Maiko Haga-Tsujimura ◽  
Kosaku Sawada ◽  
Matthias Mottini ◽  
Benoit Schaller ◽  
...  
2014 ◽  
Vol 22 (4) ◽  
pp. 503-518 ◽  
Author(s):  
Nadia Mohd Effendy ◽  
Mohd Fadhli Khamis ◽  
Ima Nirwana Soelaiman ◽  
Ahmad Nazrun Shuid

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Waiching Liu ◽  
Ting Wang ◽  
Yuhui Shen ◽  
Haobo Pan ◽  
Songlin Peng ◽  
...  

Goniopora was hydrothermally converted to coralline hydroxyapatite (CHA) and incorporated with Sr (Sr-CHA). The pore size of Goniopora was in the range of 40–300 μm with a porosity of about 68%. Surface morphologies of the coral were modified to flake-like hydroxyapatite structures on CHA and the addition of Sr detected on Sr-CHA as confirmed by SEM and EDX. As the first report of incorporating Sr into coral, about 6%–14% Sr was detected on Sr-CHA. The compressive strengths of CHA and Sr-CHA were not compromised due to the hydrothermal treatments. Sr-CHA was studied in vitro using MC3T3-E1 cells and in vivo with an ovariectomized rat model. The proliferation of MC3T3-E1 cells was significantly promoted by Sr-CHA as compared to CHA. Moreover, higher scaffold volume retention (+40%) was reported on the micro-CT analysis of the Sr-CHA scaffold. The results suggest that the incorporation of Sr in CHA can further enhance the osteoconductivity and osteoinductivity of corals. Strontium has been suggested to stimulate bone growth and inhibit bone resorption. In this study, we have successfully incorporated Sr into CHA with the natural porous structure remained and explored the idea of Sr-CHA as a potential scaffolding material for bone regeneration.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jing Yi Wang ◽  
Ru Qing Yu ◽  
Lei Huo ◽  
Nian Jing Rao ◽  
Weijia William Lu ◽  
...  

The study was aimed at investigating the effect of zoledronic acid on vascular morphometry in jawbones and long bones on a rat model. Twenty-four skeletal mature Sprague-Dawley female rats were administered oncologic dose of zoledronic acid (ZA) or normal saline for 4 weeks and then subjected to tooth extraction on the mandible and maxilla and a bone defect creation on the femur. After the surgical procedures, ZA or saline treatment was continued until sacrifice at week 2, week 4, and week 8 postoperatively. Vascular perfusion with MICROFIL was performed on all the animals. Micro-CT analysis demonstrated a tendency of decreased vessel density and vessel number in ZA-treated groups but no statistical difference. In conclusion, the neovessel formation is suppressed but not significantly by ZA treatment, indicating that angiogenesis inhibition may contribute to the development of MRONJ but does not play a key role.


2020 ◽  
Author(s):  
Yang Li ◽  
Jianghua Li ◽  
Linyan Cheng ◽  
Yetao Yao ◽  
Hao Shen ◽  
...  

Abstract Background: Thioacetamide(TAA)is used in various fields, such as synthetic drugs, organic chemical synthesis, and materials chemistry. In the medical field, TAA is mainly used to establish animal liver injury models and other organ damage models to explore their mechanisms for helping patients with liver disease, however, TAA caused bone damage is barely understood. Therefore, the aim of our study consisted in building a rat model reflecting the TAA-treated caused acute bone damage. Results: Serum samples collected from 5-times TAA-treated rats and were used in biochemical test, we found the level of aspartate aminotransferase (AST), alanine aminotransferase (ALT), uric acid (UA), total bile acid (TBA), alkaline phosphatase (ALP), carbamide (UREA) and creatinine (CREA) exhibited sharply rise, while the level of serum content of total protein (TP), lactate dehydrogenase (LDH), calcium (Ca) and phosphorus (P) were severely reduced. At the same time, we obtained some data about cortical bone and trabecular bone by Micro-CT analysis, it revealed significantly decreased bone surface, tissue surface, bone volume, tissue volume in TAA-treated rats, moreover, we used a static biomechanical test system to test the femoral force range of the hind limbs of SD rats, we found bone can resist less pressure and it is easy to take fracture. Conclusions: Summarizing, our rat model presents possible mediators of liver damage, liver damage and changes in bone structure and mineralization are already visible by Micro-CT analysis after five-times of TAA treatment. The fast response and easy building possibly make it an ideal model to investigate bone metabolism in liver damage after they were affected by TAA.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Bruno Paun ◽  
Daniel García Leon ◽  
Alex Claveria Cabello ◽  
Roso Mares Pages ◽  
Elena de la Calle Vargas ◽  
...  

Abstract Background Skeletal muscle injury characterisation during healing supports trauma prognosis. Given the potential interest of computed tomography (CT) in muscle diseases and lack of in vivo CT methodology to image skeletal muscle wound healing, we tracked skeletal muscle injury recovery using in vivo micro-CT in a rat model to obtain a predictive model. Methods Skeletal muscle injury was performed in 23 rats. Twenty animals were sorted into five groups to image lesion recovery at 2, 4, 7, 10, or 14 days after injury using contrast-enhanced micro-CT. Injury volumes were quantified using a semiautomatic image processing, and these values were used to build a prediction model. The remaining 3 rats were imaged at all monitoring time points as validation. Predictions were compared with Bland-Altman analysis. Results Optimal contrast agent dose was found to be 20 mL/kg injected at 400 μL/min. Injury volumes showed a decreasing tendency from day 0 (32.3 ± 12.0mm3, mean ± standard deviation) to day 2, 4, 7, 10, and 14 after injury (19.6 ± 12.6, 11.0 ± 6.7, 8.2 ± 7.7, 5.7 ± 3.9, and 4.5 ± 4.8 mm3, respectively). Groups with single monitoring time point did not yield significant differences with the validation group lesions. Further exponential model training with single follow-up data (R2 = 0.968) to predict injury recovery in the validation cohort gave a predictions root mean squared error of 6.8 ± 5.4 mm3. Further prediction analysis yielded a bias of 2.327. Conclusion Contrast-enhanced CT allowed in vivo tracking of skeletal muscle injury recovery in rat.


Author(s):  
Melissa R. Requist ◽  
Yantarat Sripanich ◽  
Tim Rolvien ◽  
Amy L. Lenz ◽  
Alexej Barg

2021 ◽  
Vol 22 (7) ◽  
pp. 3505
Author(s):  
Flavy Roseren ◽  
Martine Pithioux ◽  
Stéphane Robert ◽  
Laure Balasse ◽  
Benjamin Guillet ◽  
...  

Granulocyte colony-stimulating factor (G-CSF) was shown to promote bone regeneration and mobilization of vascular and osteogenic progenitor cells. In this study, we investigated the effects of a systemic low dose of G-CSF on both bone consolidation and mobilization of hematopoietic stem/progenitor cells (HSPCs), endothelial progenitor cells (EPCs) and mesenchymal stromal cells (MSCs) in a rat model of distraction osteogenesis (DO). Neovascularization and mineralization were longitudinally monitored using positron emission tomography and planar scintigraphy. Histological analysis was performed and the number of circulating HSPCs, EPCs and MSCs was studied by flow cytometry. Contrary to control group, in the early phase of consolidation, a bony bridge with lower osteoclast activity and a trend of an increase in osteoblast activity were observed in the distracted callus in the G-CSF group, whereas, at the late phase of consolidation, a significantly lower neovascularization was observed. While no difference was observed in the number of circulating EPCs between control and G-CSF groups, the number of MSCs was significantly lower at the end of the latency phase and that of HSPCs was significantly higher 4 days after the bone lengthening. Our results indicate that G-CSF accelerates bone regeneration and modulates mobilization of progenitor cells during DO.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1995
Author(s):  
Mirko Sinico ◽  
Suraj Dinkar Jadhav ◽  
Ann Witvrouw ◽  
Kim Vanmeensel ◽  
Wim Dewulf

Recently, the use of novel CuCr1 surface-modified powder for reliable laser powder-bed fusion (LPBF) manufacturing has been proposed, enabling a broader LPBF processing window and longer powder storage life. Nevertheless, virgin CuCr1 powder is also LPBF processable, on the condition that a high-energy density is employed. In this work, we compare two dense specimens produced from virgin and surface-modified CuCr1 powder. Furthermore, a third sample fabricated from surface-modified powder is characterized to understand an abnormal porosity content initially detected through Archimedes testing. Utilizing high-resolution micro-CT scans, the nature of the defects present in the different samples is revealed. Pores are analyzed in terms of size, morphology and spatial distribution. The micro-CT data reveal that the virgin CuCr1 dense specimen displays keyhole pores plus pit cavities spanning multiple layer thicknesses. On the other hand, the sample fabricated with the surface-modified CuCr1 powder mainly contains small and spherical equi-distributed metallurgical defects. Finally, the CT analysis of the third specimen reveals the presence of a W contamination, favoring lack-of-fusion pores between subsequent LPBF layers. The LPBF melting mode (keyhole or conductive), the properties of the material, and the potential presence of contaminants are connected to the different porosity types and discussed.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 408
Author(s):  
Anna Stepien

This paper describes the use of glass sand in the production of autoclaved bricks. Traditional autoclaved materials consist of SiO2, CaO, and H2O. The purpose of the tests is to analyze the possibility of using glass sand in autoclaved materials and to determine their properties and durability. Depending on the structure, building materials can have porosities ranging from 0% (glass, metals) to over 90% (thermal insulation materials such as aerated concrete). Porosity of materials is directly related to the strength of materials and their density, and further to the thermal and acoustic insulation properties of products used especially for external wall construction, i.e., bricks, concrete, and aerated concrete. This type of silicate brick is formed at a temperature of 203 °C, therefore the dominant phase forming the microstructure is tobermorite, in contrast to the C-S-H phase, which dominates in concretes and which is characterized by a larger specific surface. The nature of pores, their number, appearance and arrangement in the material can be studied using computer techniques (SEM, XRD, computed tomography, porosimetry). Computed tomography (micro-CT analysis) showed that the number of voids in the material modified by glass sand is about 20% in relation to the weight of the product. The density of the product with glass sand was determined to be 2.2 kg/dm3.


Sign in / Sign up

Export Citation Format

Share Document