Tat(48-60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake

2012 ◽  
Vol 158 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Astrid Subrizi ◽  
Eva Tuominen ◽  
Alex Bunker ◽  
Tomasz Róg ◽  
Maxim Antopolsky ◽  
...  
2001 ◽  
Vol 183 (9) ◽  
pp. 2724-2732 ◽  
Author(s):  
Céline Lévesque ◽  
Christian Vadeboncoeur ◽  
Fatiha Chandad ◽  
Michel Frenette

ABSTRACT Streptococcus salivarius, a gram-positive bacterium found in the human oral cavity, expresses flexible peritrichous fimbriae. In this paper, we report purification and partial characterization of S. salivarius fimbriae. Fimbriae were extracted by shearing the cell surface of hyperfimbriated mutant A37 (a spontaneous mutant of S. salivarius ATCC 25975) with glass beads. Preliminary experiments showed that S. salivariusfimbriae did not dissociate when they were incubated at 100°C in the presence of sodium dodecyl sulfate. This characteristic was used to separate them from other cell surface components by successive gel filtration chromatography procedures. Fimbriae with molecular masses ranging from 20 × 106 to 40 × 106Da were purified. Examination of purified fimbriae by electron microscopy revealed the presence of filamentous structures up to 1 μm long and 3 to 4 nm in diameter. Biochemical studies of purified fimbriae and an amino acid sequence analysis of a fimbrial internal peptide revealed that S. salivarius fimbriae were composed of a glycoprotein assembled into a filamentous structure resistant to dissociation. The internal amino acid sequence was composed of a repeated motif of two amino acids alternating with two modified residues: A/X/T-E-Q-M/φ, where X represents a modified amino acid residue and φ represents a blank cycle. Immunolocalization experiments also revealed that the fimbriae were associated with a wheat germ agglutinin-reactive carbohydrate. Immunolabeling experiments with antifimbria polyclonal antibodies showed that antigenically related fimbria-like structures were expressed in two other human oral streptococcal species, Streptococcus mitis andStreptococcus constellatus.


2000 ◽  
Vol 182 (22) ◽  
pp. 6456-6462 ◽  
Author(s):  
S. G. Dashper ◽  
A. Hendtlass ◽  
N. Slakeski ◽  
C. Jackson ◽  
K. J. Cross ◽  
...  

ABSTRACT Porphyromonas gingivalis is a gram-negative, anaerobic coccobacillus that has been implicated as a major etiological agent in the development of chronic periodontitis. In this paper, we report the characterization of a protein, IhtB (iron heme transport; formerly designated Pga30), that is an outer membrane hemin-binding protein potentially involved in iron assimilation by P. gingivalis. IhtB was localized to the cell surface of P. gingivalis by Western blot analysis of a Sarkosyl-insoluble outer membrane preparation and by immunocytochemical staining of whole cells using IhtB peptide-specific antisera. The protein, released from the cell surface, was shown to bind to hemin using hemin-agarose. The growth of heme-limited, but not heme-replete, P. gingivalis cells was inhibited by preincubation with IhtB peptide-specific antisera. TheihtB gene was located between an open reading frame encoding a putative TonB-linked outer membrane receptor and three open reading frames that have sequence similarity to ATP binding cassette transport system operons in other bacteria. Analysis of the deduced amino acid sequence of IhtB showed significant similarity to theSalmonella typhimurium protein CbiK, a cobalt chelatase that is structurally related to the ATP-independent family of ferrochelatases. Molecular modeling indicated that the IhtB amino acid sequence could be threaded onto the CbiK fold with the IhtB structural model containing the active-site residues critical for chelatase activity. These results suggest that IhtB is a peripheral outer membrane chelatase that may remove iron from heme prior to uptake byP. gingivalis.


2021 ◽  
Author(s):  
Anselm F. L. Schneider ◽  
Marina Kithil ◽  
M. Cristina Cardoso ◽  
Martin Lehmann ◽  
Christian P. R. Hackenberger

2016 ◽  
Vol 84 (7) ◽  
pp. 2012-2021 ◽  
Author(s):  
Lucia Chavez-Dueñas ◽  
Antonio Serapio-Palacios ◽  
Raul Nava-Acosta ◽  
Fernando Navarro-Garcia

Most autotransporter passenger domains, regardless of their diversity in function, fold or are predicted to fold as right-handed β-helices carrying various loops that are presumed to confer functionality. Our goal here was to identify the subdomain (loop) or amino acid sequence of the Pet passenger domain involved in the receptor binding site on the host cell for Pet endocytosis. Here, we show that d1 and d2 subdomains, as well as the amino acid sequence linking the subdomain d2 and the adjacent β-helix (PDWET), are not required for Pet secretion through the autotransporter system and that none of our deletion mutants altered the predicted long right-handed β-helical structure. Interestingly, Pet lacking the d2 domain (PetΔd2) was unable to bind on the epithelial cell surface, in contrast to Pet lacking d1 (PetΔd1) subdomain or PDWET sequences. Moreover, the purified d1 subdomain, the biggest subdomain (29.8 kDa) containing the serine protease domain, was also unable to bind the cell surface. Thus, d2 sequence (54 residues without the PDWET sequence) was required for Pet binding to eukaryotic cells. In addition, this d2 sequence was also needed for Pet internalization but not for inducing cell damage. In contrast, PetΔd1, which was able to bind and internalize inside the cell, was unable to cause cell damage. Furthermore, unlike Pet, PetΔd2 was unable to bind cytokeratin 8, a Pet receptor. These data indicate that the surface d2 subdomain is essential for the ligand-receptor (Pet-Ck8) interaction for Pet uptake and to start the epithelial cell damage by this toxin.


2007 ◽  
Vol 35 (1) ◽  
pp. 53-55 ◽  
Author(s):  
S. Abes ◽  
H. Moulton ◽  
J. Turner ◽  
P. Clair ◽  
J.P. Richard ◽  
...  

CPPs (cell-penetrating peptides) have given rise to much interest for the delivery of biomolecules such as peptides, proteins or ONs (oligonucleotides). CPPs and their conjugates were initially thought to translocate through the cell membrane by a non-endocytotic mechanism which has recently been re-evaluated. Basic-amino-acid-rich CPPs first interact with cell-surface proteoglycans before being internalized by endocytosis. Sequestration and degradation in endocytotic vesicles severely limits the cytoplasmic and nuclear delivery of the conjugated biomolecules. Accordingly, splicing correction by CPP-conjugated steric-block ON analogues is inefficient in the absence of endosomolytic agents. New arginine-rich CPPs allowing efficient splicing correction by conjugated PNAs (peptide nucleic acids) or PMO (phosphorodiamidate morpholino oligomer) steric blockers in the absence of endosomolytic agents have recently been defined in our group and are currently being characterized. They offer promising leads for the development of efficient cellular delivery vectors for therapeutic steric-block ON analogues.


2004 ◽  
Vol 78 (16) ◽  
pp. 8852-8859 ◽  
Author(s):  
Geert Van Minnebruggen ◽  
Herman W. Favoreel ◽  
Hans J. Nauwynck

ABSTRACT The cytoplasmic domain of pseudorabies virus (PRV) glycoprotein B (gB) contains three putative internalization motifs. Previously, we demonstrated that the tyrosine-based YQRL motif at positions 902 to 905, but not the YMSI motif at positions 864 to 867 or the LL doublet at positions 887 and 888, is required for correct functioning of gB during antibody-mediated internalization of PRV cell surface-bound glycoproteins. In the present study, we demonstrate that the YQRL motif is also crucial to allow spontaneous internalization of PRV gB, and thus, that spontaneous and antibody-mediated internalizations of PRV gB occur through closely related mechanisms. Furthermore, we found that PRV gB colocalizes with the cellular clathrin-associated AP-2 adaptor complex and that this colocalization depends on the YQRL motif. In addition, by coimmunoprecipitation assays, we found that during both spontaneous and antibody-dependent internalization, PRV gB physically interacts with AP-2, and that efficient interaction between gB and AP-2 required an intact YQRL motif. Collectively, these findings demonstrate for the first time that during internalization of an alphaherpesvirus envelope protein, i.e., PRV gB, a specific amino acid sequence in the cytoplasmic tail of the protein interacts with AP-2 and may constitute a common AP-2-mediated mechanism of internalization of alphaherpesvirus envelope proteins.


Author(s):  
Masaya Nanahara ◽  
Ya-Ting Chang ◽  
Masaharu Somiya ◽  
Shun’ichi Kuroda

Myr47 lipopeptide consisting of hepatitis B virus (HBV) pre-S1 domain (myristoylated 2-48 peptide) is a commercialized effective anti-HBV drug, preventing the interaction of HBV with sodium taurocholate cotransporting polypeptide (NTCP) on human hepatocytes, of which the activity requires both N-myristoylation residue and specific amino acid sequence. Meanwhile, we recently reported that Myr47 reduces the cellular uptake of HBV surface antigen (HBsAg, subviral particle of HBV) in the absence of NTCP expression (Somiya; et al. Virology 2016, 497, 23–32). In this study, we analyzed how Myr47 reduces the cellular uptake of lipid nanoparticles (including liposomes (LPs) and HBsAg) without NTCP expression. By using Myr47 mutants lacking the HBV infection inhibitory activity, they could reduce the cellular uptake of LPs in an N-myristoylation-dependent manner whereas in an amino acid sequence-independent manner. Moreover, Myr47 and its mutants could reduce the interaction of LPs with apolipoprotein E3 (ApoE3) in an N-myristoylation-dependent manner regardless of their amino acid sequences. From these results, N-myristoyl residue of lipopeptides generally could interfere the LPs/HBsAg-ApoE3 complex formation, thereby reducing the cellular uptake of LPs/HBsAg. When lipid nanoparticles are used as a DDS (drug delivery system) nanocarrier, the surface modification with lipopeptides may be a new method to inhibit unwanted cellular uptake of DDS nanocarriers by non-target cells.


Sign in / Sign up

Export Citation Format

Share Document