Nanoplatform-based natural products co-delivery system to surmount cancer multidrug-resistant

Author(s):  
Yan Liang ◽  
Ze-Yun Liu ◽  
Ping-Yu Wang ◽  
You-Jie Li ◽  
Ran-Ran Wang ◽  
...  
2020 ◽  
Vol 21 ◽  
Author(s):  
Andressa Kelly Ferreira e Silva ◽  
Antonielly Campinho dos Reis ◽  
Emanuelly Elanny Andrade Pinheiroc ◽  
Jonas Nascimento de Sousa ◽  
Felipe Araújo de Alcântara Oliveira ◽  
...  

Background: Microbial resistance to antibiotics is a global public health problem, which requires urgent attention. Platonia insignis is a native species from the eastern Brazilian Amazon, used in the treatment of burns and wounds. Objectives: To evaluate the antimicrobial activity of the hydroalcoholic extract of P. insignis (PIHA), the ethyl acetate fraction (PIAE), and its subfraction containing a mixture of biflavonoids (BF). Moreover, the effect of these natural products on the antibiotic activity against S. aureus strains overexpressing efflux pump genes was also evaluated. Methods: Minimal inhibitory concentrations were determined against different species of microorganisms. To evaluate the modulatory effect on the Norfloxacin-resistance, the MIC of this antibiotic was determined in the absence and presence of the natural products at subinhibitory concentrations. Inhibition of the EtBr efflux assays were conducted in the absence or presence of the natural products. Results: PIHA showed a microbicidal effect against S. aureus and C. albicans, while PIAE was bacteriosctatic for S. aureus. PIAE and BF at subinhibitory concentrations were able to reduce the MIC of Norfloxacin acting as modulating agents. BF was able to inhibit the efflux of EtBr efflux in S. aureus strains overexpressing specific efflux pump genes. Conclusion: P. inignisis a source of efflux pump inhibitors, including volkensiflavone and morelloflavone which were able to potentiate the Norfloxacin activity by NorA inhibition, being also able to inhibit QacA/B, TetK and MsrA. Volkensiflavone and morelloflavone could be used as adjuvant in the antibiotic therapy of multidrug resistant S. aureus strains overexpressing efflux pumps.


2021 ◽  
Vol 12 ◽  
Author(s):  
Donghui Gan ◽  
Yuwen Chen ◽  
Zhengjun Wu ◽  
Liping Luo ◽  
Shimuye Kalayu Yirga ◽  
...  

Acute lymphoblastic leukemia (ALL) is an aggressive malignancy. Adults with ALL have more than 50% relapse rates. We have previously validated that overexpression of nucleophosmin (NPM) is involved in the multidrug resistance (MDR) development during ALL; and a synthetically engineered recombinant NPM binding protein (NPMBP) has been developed in our group; NPMBP and doxorubicin (DOX) can be conjugated in a nanoparticle-based drug delivery system named DOX-PMs-NPMBP to counteract MDR during ALL. Here, we evaluated the antileukemia potential of DOX-PMs-NPMBP in resistant ALL cells. This study demonstrates that DOX-PMs-NPMBP significantly enhances chemosensitivity to DOX in ALL cells. Despite at variable concentrations, both resistant and primary ALL cells from relapsed patients were sensitive to DOX-PMs-NPMBP. In detail, the half maximal inhibitory concentration (IC50) values of DOX-PMs-NPMBP were between 1.6- and 7.0-fold lower than those of DOX in cell lines and primary ALL cells, respectively; and apoptotic cells ratio was over 2-fold higher in DOX-PMs-NPMBP than DOX. Mechanistically, p53-driven apoptosis induction and cell cycle arrest played essential role in DOX-PMs-NPMBP-induced anti-leukemia effects. Moreover, DOX-PMs-NPMBP significantly inhibited tumor growth and prolonged mouse survival of ALL xenograft models; and no systemic toxicity occurrence was observed after treatment during follow-up. In conclusion, these data indicate that DOX-PMs-NPMBP may significantly exert growth inhibition and apoptosis induction, and markedly improve DOX antileukemia activity in resistant ALL cells. This novel drug delivery system may be valuable to develop as a new therapeutic strategy against multidrug resistant ALL.


Author(s):  
Christine M. Slover ◽  
Larry H. Danziger ◽  
Bolanle A. Adeniyi ◽  
Gail B. Mahady

2019 ◽  
Vol 85 (23) ◽  
Author(s):  
Joseph Basalla ◽  
Payel Chatterjee ◽  
Elizabeth Burgess ◽  
Mahnur Khan ◽  
Emily Verbrugge ◽  
...  

ABSTRACT Since the discovery of penicillin, microbes have been a source of antibiotics that inhibit the growth of pathogens. However, with the evolution of multidrug-resistant (MDR) strains, it remains unclear if there is an abundant or limited supply of natural products to be discovered that are effective against MDR isolates. To identify strains that are antagonistic to pathogens, we examined a set of 471 globally derived environmental Pseudomonas strains (env-Ps) for activity against a panel of 65 pathogens including Achromobacter spp., Burkholderia spp., Pseudomonas aeruginosa, and Stenotrophomonas spp. isolated from the lungs of cystic fibrosis (CF) patients. From more than 30,000 competitive interactions, 1,530 individual inhibitory events were observed. While strains from water habitats were not proportionate in antagonistic activity, MDR CF-derived pathogens (CF-Ps) were less susceptible to inhibition by env-Ps, suggesting that fewer natural products are effective against MDR strains. These results advocate for a directed strategy to identify unique drugs. To facilitate discovery of antibiotics against the most resistant pathogens, we developed a workflow in which phylogenetic and antagonistic data were merged to identify strains that inhibit MDR CF-Ps and subjected those env-Ps to transposon mutagenesis. Six different biosynthetic gene clusters (BGCs) were identified from four strains whose products inhibited pathogens including carbapenem-resistant P. aeruginosa. BGCs were rare in databases, suggesting the production of novel antibiotics. This strategy can be utilized to facilitate the discovery of needed antibiotics that are potentially active against the most drug-resistant pathogens. IMPORTANCE Carbapenem-resistant P. aeruginosa is difficult to treat and has been deemed by the World Health Organization as a priority one pathogen for which antibiotics are most urgently needed. Although metagenomics and bioinformatic studies suggest that natural bacteria remain a source of novel compounds, the identification of genes and their products specific to activity against MDR pathogens remains problematic. Here, we examine water-derived pseudomonads and identify gene clusters whose compounds inhibit CF-derived MDR pathogens, including carbapenem-resistant P. aeruginosa.


2014 ◽  
Vol 58 (12) ◽  
pp. 7579-7582 ◽  
Author(s):  
Lizette Grobler ◽  
Marina Chavchich ◽  
Richard K. Haynes ◽  
Michael D. Edstein ◽  
Anne F. Grobler

ABSTRACTThein vitroantimalarial activities of artemisone and artemisone entrapped in Pheroid vesicles were compared, as was their ability to induce dormancy inPlasmodium falciparum. There was no increase in the activity of artemisone entrapped in Pheroid vesicles against multidrug-resistantP. falciparumlines. Artemisone induced the formation of dormant ring stages similar to dihydroartemisinin. Thus, the Pheroid delivery system neither improved the activity of artemisone nor prevented the induction of dormant rings.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 105
Author(s):  
Catherine R. Back ◽  
Henry L. Stennett ◽  
Sam E. Williams ◽  
Luoyi Wang ◽  
Jorge Ojeda Gomez ◽  
...  

To tackle the growing problem of antibiotic resistance, it is essential to identify new bioactive compounds that are effective against resistant microbes and safe to use. Natural products and their derivatives are, and will continue to be, an important source of these molecules. Sea sponges harbour a diverse microbiome that co-exists with the sponge, and these bacterial communities produce a rich array of bioactive metabolites for protection and resource competition. For these reasons, the sponge microbiota constitutes a potential source of clinically relevant natural products. To date, efforts in bioprospecting for these compounds have focused predominantly on sponge specimens isolated from shallow water, with much still to be learned about samples from the deep sea. Here we report the isolation of a new Micromonospora strain, designated 28ISP2-46T, recovered from the microbiome of a mid-Atlantic deep-sea sponge. Whole-genome sequencing reveals the capacity of this bacterium to produce a diverse array of natural products, including kosinostatin and isoquinocycline B, which exhibit both antibiotic and antitumour properties. Both compounds were isolated from 28ISP2-46T fermentation broths and were found to be effective against a plethora of multidrug-resistant clinical isolates. This study suggests that the marine production of isoquinocyclines may be more widespread than previously supposed and demonstrates the value of targeting the deep-sea sponge microbiome as a source of novel microbial life with exploitable biosynthetic potential.


Sign in / Sign up

Export Citation Format

Share Document