In situ stalk growth rates in tropical western Atlantic sea lilies (Echinodermata: Crinoidea)

2007 ◽  
Vol 353 (2) ◽  
pp. 211-220 ◽  
Author(s):  
Charles G. Messing ◽  
Jérôme David ◽  
Michel Roux ◽  
Nadia Améziane ◽  
Tomasz K. Baumiller
1996 ◽  
Vol 84 ◽  
pp. 17-22
Author(s):  
A. Ranaivoarisoa ◽  
J. M. Olive ◽  
D. Desjardins

An optical method named In Situ Surface Observation Technique (ISSOT) is presented in this paper. This method is used to detect crack nucleation from a flaw (here a pit) at mesoscopic scale during a triangular push-pull cycling test under the control of charge amplitude in aqueous solution ofMgCl2 at 117°C. It can be found that the crack initiation time determined by using this technique represents 2 % of that estimated from a mechanical criterion. Moreover, the follow of the crack tip evolution by the ISSOT allows to measure average local crack growth rates. It has been shown that the variations of the latter were related to the effects of barriers such as grain boundaries, twin boundaries and grain boundaries triple junction.


2016 ◽  
Author(s):  
Peter G. Simmonds ◽  
Matthew Rigby ◽  
Archibold McCulloch ◽  
Simon O'Doherty ◽  
Dickon Young ◽  
...  

Abstract. High frequency, in situ global observations of HCFC-22 (CHClF2), HCFC-141b (CH3CCl2F), HCFC-142b (CH3CClF2) and HCFC-124 (CHClFCF3) and their main HFC replacements HFC-134a (CH2FCF3), HFC-125 (CHF2CF3), HFC-143a (CH3CF3), and HFC-32 (CH2F2) have been used to determine their changing global growth rates and emissions in response to the Montreal Protocol and its recent amendments. The 2007 adjustment to the Montreal Protocol required the accelerated phase-out of HCFCs with global production and consumption capped in 2013, to mitigate their environmental impact as both ozone depleting substances and important greenhouse gases. We find that this change has coincided with a reduction in global emissions of the four HCFCs with aggregated global emissions in 2015 of 444 ± 75 Gg/yr, in CO2 equivalent units (CO2 e) 0.75 ± 0.1 Gt/yr, compared with 483 ± 70 Gg/yr (0.82 ± 0.1 Gt/yr CO2 e) in 2010. (All quoted uncertainties in this paper are 1 sigma). About 80 % of the total HCFC atmospheric burden in 2015 is HCFC-22, where global HCFC emissions appear to have been relatively constant in spite of the 2013 cap on global production and consumption. We attribute this to a probable increase in production and consumption of HCFC-22 in Montreal Protocol Article 5 (developing) countries and the continuing release of HCFC-22 from the large banks which dominate HCFC global emissions. Conversely, the four HFCs all show increasing annual growth rates with aggregated global HFCs emissions in 2015 of 329 ± 70 Gg/yr (0.65 ± 0.12 Gt/yr CO2 e) compared to 2010 with 240 ± 50 Gg/yr (0.47 ± 0.08 Gt/yr CO2 e). As HCFCs are replaced by HFCs we investigate the impact of the shift to refrigerant blends which have lower global warming potentials (GWPs). We also note that emissions of HFC-125 and HFC-32 appear to have increased more rapidly during the 2011–2015 5-yr period compared to 2006–2010.


Coral Reefs ◽  
2018 ◽  
Vol 37 (4) ◽  
pp. 985-993 ◽  
Author(s):  
C. Bessey ◽  
R. C. Babcock ◽  
D. P. Thomson ◽  
M. D. E. Haywood

1997 ◽  
Vol 483 ◽  
Author(s):  
S. A. Ustin ◽  
C. Long ◽  
L. Lauhon ◽  
W. Ho

AbstractCubic SiC films have been grown on Si(001) and Si(111) substrates at temperatures between 600 °C and 900 °C with a single supersonic molecular beam source. Methylsilane (H3SiCH3) was used as the sole precursor with hydrogen and nitrogen as seeding gases. Optical reflectance was used to monitor in situ growth rate and macroscopic roughness. The growth rate of SiC was found to depend strongly on substrate orientation, methylsilane kinetic energy, and growth temperature. Growth rates were 1.5 to 2 times greater on Si(111) than on Si(001). The maximum growth rates achieved were 0.63 μm/hr on Si(111) and 0.375μm/hr on Si(001). Transmission electron diffraction (TED) and x-ray diffraction (XRD) were used for structural characterization. In-plane azimuthal (ø-) scans show that films on Si(001) have the correct 4-fold symmetry and that films on Si(111) have a 6-fold symmetry. The 6-fold symmetry indicates that stacking has occurred in two different sequences and double positioning boundaries have been formed. The minimum rocking curve width for SiC on Si(001) and Si(111) is 1.2°. Fourier Transform Infrared (FTIR) absorption was performed to discern the chemical bonding. Cross Sectional Transmission Electron Microscopy (XTEM) was used to image the SiC/Si interface.


2021 ◽  
Author(s):  
Tatiana S. Leite ◽  
Erica A.G. Vidal ◽  
Françoise Dantas Lima ◽  
Sergio M.Q. Lima ◽  
Ricardo M Dias ◽  
...  

Abstract The new species, Paroctopus cthulu sp. nov. Leite, Haimovici, Lima and Lima, was recorded from very shallow coastal waters on sandy/muddy and shelter-poor bottoms with natural and human-origin debris. It is a small octopus, adults are less than 35 mm mantle length (ML) and weigh around 15 g. It has short to medium sized arms, enlarged suckers on the arms of both males and females, large posterior salivary glands (25 %ML), a relatively large beak (9 % ML) and medium to large mature eggs (3.5 to > 9 mm). The characteristics of hatchlings of two brooding females, some of their anatomical features, and in-situ observations of their behaviour are a clue to the life history of it and closely related pygmy octopuses. The Bayesian phylogenetic analysis showed that Paroctopus cthulu sp.nov. specimens grouped in a well-supported clade of Paroctopus species, separate from P.joubini and P. cf mercatoris from the Northwestern Atlantic . The description of this new species, living in a novel habitat of human debris in shallow water off Brazil, offered an opportunity not only to evaluate the relationship among the small octopuses of the western Atlantic, Caribbean and eastern Pacific, but also their adaptation to the Anthropocene period.


2011 ◽  
Vol 78 (2) ◽  
pp. 363-370 ◽  
Author(s):  
Lior Guttman ◽  
Jaap van Rijn

ABSTRACTUsing a relatively simple enrichment technique, geosmin and 2-methylisoborneol (MIB)-biodegrading bacteria were isolated from a digestion basin in an aquaculture unit. Comparison of 16S rRNA gene sequences affiliated one of the three isolates with the Gram-positive genusRhodococcus, while the other two isolates were found to be closely related to the Gram-negative familyComamonadaceae(VariovoraxandComamonas). Growth rates and geosmin and MIB removal rates by the isolates were determined under aerated and nonaerated conditions in mineral medium containing either of the two compounds as the sole carbon and energy source. All isolates exhibited their fastest growth under aerobic conditions, with generation times ranging from 3.1 to 5.7 h, compared to generation times of up to 19.1 h in the nonaerated flasks. Incubation of the isolates with additional carbon sources caused a significant increase in their growth rates, while removal rates of geosmin and MIB were significantly lower than those for incubation with only geosmin or MIB. By fluorescencein situhybridization, members of the generaRhodococcusandComamonaswere detected in geosmin- and MIB-enriched sludge from the digestion basin.


1983 ◽  
Vol 40 (3) ◽  
pp. 287-297 ◽  
Author(s):  
Karl K. English

Juvenile chinook salmon, Oncorhynchus tshawytscha, were raised in 90-m3 mesh enclosures in Saanich Inlet, B.C. The enclosures permitted ample water and zooplankton circulation while retaining 5–6 g juvenile salmon. Mean growth rate was 1.8% wet body weight/d over 6 wk. Weekly growth rates ranged from 3.9%/d while food was abundant, to −0.5%/d when food was scarce. Zooplankton concentration inside and outside enclosures without fish were not significantly different. Organisms associated with the sides of the enclosures (non-pelagic) were not a major contributor to the growth of the juvenile chinook. There was a strong relationship between the fish growth rates and the abundance of 1.4- to 4.5-mm zooplankton. Rates of successful search varied directly with the size and inherent contrast of a prey item. The minimum rate of successful search was 2.3 m3/h for salmon feeding on 1.4- to 4.5-mm zooplankton. This rate of successful search, while far greater than previously suspected, is still within the visual capabilities of the juvenile salmon. The enclosed salmon grew rapidly on zooplankton concentrations that were 1/1000 of those required to sustain similar growth rates in tank experiments.Key words: predator–prey relationship, planktivorous salmonid, marine, "in situ" enclosures, search efficiency


2021 ◽  
Author(s):  
Thorsten Fehr ◽  
Gail Skofronick-Jackson ◽  
Vassilis Amiridis ◽  
Jonas von Bismarck ◽  
Shuyi Chen ◽  
...  

<p>The Tropics are covering around 40% of the globe and are home to approximately 40% of the world population. However, numerical weather prediction (NWP) for this region still remains challenging due to the lack of basic observations and incomplete understanding of atmospheric processes, also affecting extratropical storm developments. As a result, the largest impact of the ESA’s Aeolus satellite observations on NWP is expected in the Tropics where only a very limited number of wind profile observations from the ground can be performed.</p><p>An especially important case relating to the predictability of tropical weather system is the outflow of Saharan dust, its interaction with cloud micro-physics and the overall impact on the development of tropical storms over the Atlantic Ocean. The region of the coast of West Africa uniquely allows the study of the Saharan Aerosol layer, African Easterly Waves and Jets, Tropical Easterly Jet, as well as the deep convection in ITCZ and their relation to the formation of convective systems and the transport of dust.</p><p>Together with international partners, ESA and NASA are currently implementing a joint Tropical campaign from July to August 2021 with its base in Cape Verde. The campaign objective is to provide information on the validation and preparation of the ESA missions Aeolus and EarthCARE, respectively, as well as supporting a range of related science objectives for the investigation in the interactions between African Easterly and other tropical waves with the mean flow, dust and their impact on the development of convective systems; the structure and variability of the marine boundary layer in relation to initiation and lifecycle of the convective cloud systems within and across the ITCZ; and impact of wind, aerosol, clouds, and precipitation effects on long range dust transport and air quality over the western Atlantic.</p><p>The campaign comprises a unique combination of both strong airborne and ground-based elements collocated on Cape Verde. The airborne component with wind and aerosol lidars, cloud radars, in-situ instrumentation and additional observations includes the NASA DC-8 with science activities coordinated by the U. of Washington, the German DLR Falcon-20, the French Safire Falcon-20 with activities led by LATMOS, and the Slovenian Aerovizija Advantic WT-10 light aircraft in cooperation with the U. Novo Gorica. The ground-based component led by the National Observatory of Athens is a collaboration of more than 25 European teams providing in-situ and remote sensing aerosol and cloud measurements with a wide range of lidar, radar and radiometer systems, as well as drone observatins by the Cyprus Institute.</p><p>In preparation for the field campaign, the NASA and ESA management and science teams are closely collaborating with regular coordination meetings, in particular in coordinating the shift of the activity by one year due to the COVID-19 pandemic. The time gained has been used to further consolidate the planning, and in particular with a dry-run campaign organized by NASA with European participation where six virtual flights were conducted in July 2020.</p><p> This paper will present a summary of the campaign preparation activities and the consolidated plan for the 2021 Tropical campaign.</p>


Sign in / Sign up

Export Citation Format

Share Document