scholarly journals Evaluation of Pediococcus pentosaceus strains isolated from Idly batter for probiotic properties in vitro

2013 ◽  
Vol 5 (1) ◽  
pp. 235-243 ◽  
Author(s):  
Venkatasubramanian Vidhyasagar ◽  
Kadirvelu Jeevaratnam
2021 ◽  
pp. 1-12
Author(s):  
A. Lecocq ◽  
M.E. Natsopoulou ◽  
I.E. Berggreen ◽  
J. Eilenberg ◽  
L.-H. Lau Heckmann ◽  
...  

Optimising the production of insects for food and feed and ensuring their health are growing concerns for producers. Insects suffer from a range of insect pathogenic microorganisms, and the management of such diseases is essential. One solution is the introduction of beneficial probiotic bacteria into the diet of the insects. Here, we show that a lactic acid bacterial strain, Pediococcus pentosaceus, isolated from the gut of the mealworm, Tenebrio molitor, was able to inhibit the growth of selected insect pathogens in vitro. Using in vivo assessments of the host’s fitness benefits conferred by the lactic bacterium we show a significant effect of P. pentosaceus on larval growth rate and survival into adulthood. Gut microbiota analysis focusing on bacterial composition based on 16S rRNA gene amplicon sequencing suggests that P. pentosaceus could have successfully colonised the guts, or altered their bacteria, of the larvae that received it. Finally, we discuss our results in the context of mass insect production systems and outline the remaining work needed to explore and secure the role of beneficial bacterial additives in the field.


2022 ◽  
Vol 12 ◽  
Author(s):  
Erola Astó ◽  
Pol Huedo ◽  
Tatiana Altadill ◽  
Meritxell Aguiló García ◽  
Maura Sticco ◽  
...  

Functional gastrointestinal disorders (FGIDs) are a common concern during the first year of life. Recognized as gut-brain axis disorders by Rome IV criteria, FGIDs etiology is linked to altered gut-brain interaction, intestinal physiology, and microbiota. In this regard, probiotics have emerged as a promising therapy for infant FGIDs. In this study, we have investigated the probiotic potential of the strains Bifidobacterium longum KABP042 and Pediococcus pentosaceus KABP041—isolated from healthy children’s feces—in the treatment of FGIDs. To this scope, genome sequences of both strains were obtained and subjected to in silico analyses. No virulence factors were detected for any strain and only the non-transferable erm(49) gene, which confers resistance to erythromycin and clindamycin, was identified in the genome of B. longum KABP042. Safety of both strains was confirmed by acute oral toxicity in rats. In vitro characterization revealed that the strains tolerate gastric and bile challenges and display a great adhesion capacity to human intestinal cells. The two strains mediate adhesion by different mechanisms and, when combined, synergically induce the expression of Caco-2 tight junction proteins. Moreover, growth inhibition experiments demonstrated the ability of the two strains alone and in combination to antagonize diverse Gram-negative and Gram-positive bacterial pathogens during sessile and planktonic growth. Pathogens’ inhibition was mostly mediated by the production of organic acids, but neutralization experiments strongly suggested the presence of additional antimicrobial compounds in probiotic culture supernatants such as the bacteriocin Lantibiotic B, whose gene was detected in the genome of B. longum KABP042. Finally, an exploratory, observational, pilot study involving 36 infants diagnosed with at least one FGID (infant colic and/or functional constipation) showed the probiotic formula was well tolerated and FGID severity was significantly reduced after 14 days of treatment with the 2 strains. Overall, this work provides evidence of the probiotic and synergic properties of strains B. longum KABP042 and P. pentosaceus KABP041, and of their potential to treat pediatric FGIDs.Clinical Trial Registration: [www.ClinicalTrials.gov], [identifier NCT04944628].


2020 ◽  
Vol 11 (7) ◽  
pp. 6376-6386
Author(s):  
Huan Zhang ◽  
Qiang Wang ◽  
Haotian Liu ◽  
Baohua Kong ◽  
Qian Chen

High NaCl concentrations resulted in cell surface damage, while appropriate NaCl concentrations improved the probiotic properties of P. pentosaceus R1 and L. fermentum R6.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1860
Author(s):  
Patricia Diez-Echave ◽  
Izaskun Martín-Cabrejas ◽  
José Garrido-Mesa ◽  
Susana Langa ◽  
Teresa Vezza ◽  
...  

Limosilactobacillus reuteri INIA P572 is a strain able to produce the antimicrobial compound reuterin in dairy products, exhibiting a protective effect against some food-borne pathogens. In this study, we investigated some probiotic properties of this strain such as resistance to gastrointestinal passage or to colonic conditions, reuterin production in a colonic environment, and immunomodulatory activity, using different in vitro and in vivo models. The results showed a high resistance of this strain to gastrointestinal conditions, as well as capacity to grow and produce reuterin in a human colonic model. Although the in vitro assays using the RAW 264.7 macrophage cell line did not demonstrate direct immunomodulatory properties, the in vivo assays using a Dextran Sulphate Sodium (DSS)-induced colitic mice model showed clear immunomodulatory and protective effects of this strain.


2021 ◽  
pp. 1133-1142
Author(s):  
Chiraprapha Tuyarum ◽  
Aporn Songsang ◽  
Monthon Lertworapreecha

Background and Aim: Using antimicrobials as a feed additive in swine production is prohibited because it is a major cause of the emergence of antimicrobial-resistant bacteria. Probiotics such as Lactobacillus spp. are an attractive alternative to reduce antimicrobial resistance and promote swine growth. This study aimed to evaluate the in vitro probiotic properties of Lactobacillus isolated from indigenous swine manure. Materials and Methods: A total of 30 fecal samples from healthy individual indigenous pigs were collected and isolated on de Man, Rogosa, and Sharpe agar. The preliminary screen identified candidates with antibacterial activity against six pathogens and >50% survival and tolerance to acid (pH 3.0) and 1% bile salt. Isolates that passed the initial screen will be tested for other probiotic properties. Results: Of the 314 isolates from 30 pig manure samples, 17 isolates satisfied all initial conditions for probiotic properties. Each isolate has unique, distinctive properties. Isolates B4, B5, B8, B17, B87, and B144 formed thick biofilms, whereas isolates B5, B8, and 27 adhered well to the intestinal wall and exhibited strong autoaggregation properties. Isolate B4 aggregated with Enterohemorrhagic Escherichia coli and Enteropathogenic E. coli. Tests in pH-adjusted cell-free medium indicated that the antibacterial activity resulted from bacterial acidification rather than bacteriocin formation. Sequence analysis (16S rRNA) revealed 16 of the isolates were Lactobacillus plantarum, and only one isolate was Lactobacillus salivarius. Conclusion: We isolated 17 Lactobacillus from swine manure and demonstrated that their probiotic properties might be useful as a probiotic cocktail for swine feed.


Author(s):  
Mihaela DUMITRU ◽  
Mihaela HĂBEANU ◽  
Cristina TABUC ◽  
Ștefana JURCOANE

This study aimed to evaluate some probiotic properties of Bacillus subtilis ATCC 6051a. The phenotypic profile, resistance to pH by simulated gastric juice (pH 2 and 3), bile salts by simulated intestinal fluid, survivability (%), heat and antibiotics tolerance were investigated. The strain is a Gram-positive, rod-shaped bacteria, arranged in short chains or in small irregular pairs with the ability to produce spores. Good viability at pH 2 and 3, with a survival of more than ≥80%, was found. In the presence of bile salts 0.3%, over 4 h, the strain exhibited a survival ≥85%. At 80°C, for 120 min., the strain showed good growth (9.04 log CFU/ml). Results were sensitive to most antibiotics, with a highly susceptible (between 16 – 25 mm) to erythromycin, clindamycin, amoxicillin, chloramphenicol, ciprofloxacin, amikacin and kanamycin. The strain was found to be sensitive to vancomycin, gentamicin, and tetracycline. The present research demonstrated that Bacillus subtilis ATCC 6051a can survive under gastrointestinal conditions, which involves them to future in vitro and in vivo probiotic studies.


Sign in / Sign up

Export Citation Format

Share Document