Groundwater table fluctuations in a coastal unconfined aquifer with depth-varying hydraulic properties

2021 ◽  
pp. 127407
Author(s):  
Mingzhe Yang ◽  
Yihao Zheng ◽  
Xinghua Xu ◽  
Haijiang Liu ◽  
Pei Xin
2020 ◽  
Vol 38 (4A) ◽  
pp. 515-522
Author(s):  
Marwa S. Hussein ◽  
Imzahim A. Alwan ◽  
Tariq A. Hussain

The study area is located in the holy governorate of Karbala, Iraq; the research studied a predictive mathematical model of groundwater within Dibdiba Formation and by fifty (50) wells distributed randomly within the boundaries of the study area, all of them fall within the unconfined aquifer. Likewise, there is no component to direct the activity of these wells, where a mathematical model for the study area has been developed using the groundwater system modeling program (GMS v.10). The area was divided into a grid where the dimensions of a single cell ranged from 250m×250m. The model of the steady flow state was adjusted utilizing pressure driven conductivity extending from 9 to 15 m/day with a 0.15 storage coefficient to match the groundwater levels measured with the calculated groundwater table. The model was run for unsteady flow condition in the first scenario with fifty (50) wells and five (5) years. The drawdown in the groundwater tables ranged between (0.05-1.05) m. In the second scenario, the model was run after adding thirty-six (36) wells for five (5) years, groundwater limits 0.15-1.15 meters. The drawdown values are concentrated near wells sites, and the drawdown decline as we move away from the sites of these wells and this reflects the nature of the water reservoir located in the study area, which is characterized by high production where compensation resulting from the operation of the wells decline rapidly by the reservoir. Therefore, the values of the drawdown in elevations appeared very low. The study also showed the possibility of drilling additional wells in this area, depending on this model to benefit from them in the future for different uses.


2012 ◽  
Vol 518-523 ◽  
pp. 4097-4103
Author(s):  
Hwa Sheng Gau ◽  
Chung Yi Chung ◽  
Shao Wei Liao ◽  
Wen Liang Lai

This study is using Factor Analysis method to analyze the hydrographs of groundwater table for classification of recharge zone. The water table data are taken from 37 wells which located on unconfined aquifer in Pingtung plain. The result shows that 93% of total variance can be explained by three components. The 1th component is related to rainfall; the 2th and 3th are related to recharge from TungKang Basin and Kaoping basin, respectively.


2015 ◽  
Vol 531 ◽  
pp. 2-16 ◽  
Author(s):  
Avinoam Rabinovich ◽  
Warren Barrash ◽  
Michael Cardiff ◽  
David L. Hochstetler ◽  
Tania Bakhos ◽  
...  

2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Doung Rata ◽  
Doni Prakasa Eka Putra ◽  
Heru Hendrayana

Parangtritis beach, located in a coastal aquifer at the southern part of Yogyakarta Province, Indonesia is bounded by the Indian Ocean at the South, Opak River at the West, and Tertiary Limestone Rock to the East. Local land-use is predominantly agriculture, rice fields and settlements and the population is estimated to be 9,386 persons as per the 2012 census. The total surface area is estimated at 9.46 km2. The aims of this research were to understand the system of groundwater and to assess and predict saltwater intrusion by conducting a numerical groundwater model. Hydrological and hydrogeological data were collected directly from the field and from previous work for input into the model. The model simulates an unconfined aquifer system where the aquifer thickness varies from 30-40 meters. The material of the aquifer consists of sand varying from fine to coarse grain size and fine gravel with hydraulic conductivity values of 8.974 × 10−4, 1.794 × 10−3, and 1.337 × 10−3 m/s at the northern, central, and southern part of the research area, respectively. The maximum length of the saltwater interface was estimated at about 205.1 m laterally and 40 m vertically relative to the location of the groundwater table around 1m above sea level. Direction of groundwater flow is from north to south. Groundwater table elevation equals 5 m at the north and 0 m at the south with a hydraulic gradient estimated at about 2.45 × 10−3. As a result of a steady-state simulation as well as two cases of prediction for five and ten years in the future, it is determined that that the salinity of the surrounding environment is not potentially adverse to the groundwater quality in the study area. This is in part due to low population in this area and abundant groundwater resources, as well as the results of the groundwater model. Keywords: Coastal aquifer, numerical groundwater model, conceptual model, observed heads


2012 ◽  
Vol 16 (9) ◽  
pp. 3075-3082 ◽  
Author(s):  
A. Rodhe

Abstract. Hydrology teaching benefits from the fact that many important processes can be illustrated and explained with simple physical models. A set of mobile physical models has been developed and used during many years of lecturing at basic university level teaching in hydrology. One model, with which many phenomena can be demonstrated, consists of a 1.0-m-long plexiglass container containing an about 0.25-m-deep open sand aquifer through which water is circulated. The model can be used for showing the groundwater table and its influence on the water content in the unsaturated zone and for quantitative determination of hydraulic properties such as the storage coefficient and the saturated hydraulic conductivity. It is also well suited for discussions on the runoff process and the significance of recharge and discharge areas for groundwater. The flow paths of water and contaminant dispersion can be illustrated in tracer experiments using fluorescent or colour dye. This and a few other physical models, with suggested demonstrations and experiments, are described in this article. The finding from using models in classroom teaching is that it creates curiosity among the students, promotes discussions and most likely deepens the understanding of the basic processes.


2021 ◽  
Author(s):  
Ruixue Jiang ◽  
Dongmei Han ◽  
Xianfang Song ◽  
Fandong Zheng

Abstract Reclaimed water (RW) has been widely used as an alternative water resource to recharge rivers in mega-city Beijing. At the same time, the RW also recharges the ambient aquifers through riverbank filtration, and modifies the subsurface hydrodynamic system and hydrochemical characteristics. To assess the impact of RW recharge on the unconfined groundwater system, we conducted a 3D groundwater flow and solute transport model based on 10 years of sequenced groundwater monitoring data to analyze the changes of the groundwater table, Cl- loads, and NO3-N loads in the shallow aquifer after RW recharge to the river channel. The results show that the groundwater table around the river channel elevated by about 3~4 m quickly after RW recharge from Dec. 2007 to Dec. 2009, and then remained stable due to the continuous RW infiltration. However, the unconfined groundwater storage still declined overall from 2007 to 2014 due to groundwater exploitation. The storage began to recover after groundwater extraction reduction, rising from 3.76×108 m3 at the end of 2014 to 3.85×108 m3 at the end of 2017. Cl- concentrations varied from 5~75 mg/L before RW recharge to 50~130 mg/L in two years (2007–2009), and then remained stable. The zones of the unconfined groundwater quality-affected by RW infiltration increased from 11.7 km2 in 2008 to 26.7 km2 in 2017. Cl- loads of the unconfined groundwater increased from 1.66×104 t in 2008 to 3.8×103 t in 2017, while NO3-N loads decreased from 29.8 t in 2008 to 11.9 t in 2017 annually in the zones. We determined the maximum area of the unconfined groundwater quality affected by RW, and groundwater outside this area not affected by RW recharge keeps its original state. The RW recharge to the river channel in the study area is beneficial to increase the groundwater table and unconfined groundwater storage with lesser environmental impacts.


2012 ◽  
Vol 9 (3) ◽  
pp. 4135-4160 ◽  
Author(s):  
A. Rodhe

Abstract. Hydrology teaching benefits from the fact that many important processes can be illustrated and explained with simple physical models. A set of mobile physical models has been developed and used during many years of lecturing at basic university level teaching in hydrology. One model, with which many phenomena can be demonstrated, consists of a 1.0 m long plexiglass container containing an about 0.25 m deep open sand aquifer through which water is circulated. The model can be used for showing the groundwater table and its influence on the water content in the unsaturated zone and for quantitative determination of hydraulic properties such as the storage coefficient and the saturated hydraulic conductivity. It is also well suited for discussions on the runoff process and the significance of recharge and discharge areas for groundwater. The flowpaths of water and contaminant dispersion can be illustrated in tracer experiments using flourescent or colour dye. This and a few other physical models, with suggested demonstrations and experiments, are described in this article. The finding from using models in class-room teaching is that it creates curiosity among the students, promotes discussions and most likely deepens the understanding of the basic processes.


2020 ◽  
Author(s):  
Hiroki Goto ◽  
Mituhiko Sugihara ◽  
Yuji Nishi ◽  
Hiroshi Ikeda

<p>Estimation of aquifer hydraulic properties is necessary for predicting groundwater flow and hence managing groundwater resources. Analysis of tide-induced groundwater table fluctuations in unconfined aquifers is one of the methods to estimate aquifer properties. Changes in groundwater level affect surface gravity. Consequently, surface gravity in coastal regions is expected to fluctuate due to the groundwater table fluctuations and is potentially useful for estimating aquifer properties. Moreover, gravity measurements are sensitive to mass redistribution around the observation location and therefore are useful for estimating the storage coefficient of an aquifer. In this study, surface gravity and unconfined groundwater level were measured continuously near the coast of Japan to observe gravity fluctuations due to the tide-induced groundwater table fluctuations. Groundwater level measured in two wells at 60 and 90 m distances from the coastline fluctuated in response to ocean tides. Two superconducting gravimeters (SGs) were installed at 70 and 80 m distances from the coastline and at an elevation of 8 m. After taking the difference between gravity values recorded with the two SGs and then correcting the gravity difference for ocean loading effects, diurnal and semi-diurnal gravity fluctuations, which are possibly due to tide-induced groundwater table fluctuations, were recognized. These results suggest that gravity monitoring with two SGs at different distances from the coastline can be useful for observing gravity fluctuations due to tide-induced groundwater table fluctuations and possibly for estimating aquifer hydraulic properties.</p>


Sign in / Sign up

Export Citation Format

Share Document