scholarly journals Numerical Modeling of Changes In Groundwater Storage And Nitrate Load in The Unconfined Aquifer Near a River Receiving Reclaimed Water

Author(s):  
Ruixue Jiang ◽  
Dongmei Han ◽  
Xianfang Song ◽  
Fandong Zheng

Abstract Reclaimed water (RW) has been widely used as an alternative water resource to recharge rivers in mega-city Beijing. At the same time, the RW also recharges the ambient aquifers through riverbank filtration, and modifies the subsurface hydrodynamic system and hydrochemical characteristics. To assess the impact of RW recharge on the unconfined groundwater system, we conducted a 3D groundwater flow and solute transport model based on 10 years of sequenced groundwater monitoring data to analyze the changes of the groundwater table, Cl- loads, and NO3-N loads in the shallow aquifer after RW recharge to the river channel. The results show that the groundwater table around the river channel elevated by about 3~4 m quickly after RW recharge from Dec. 2007 to Dec. 2009, and then remained stable due to the continuous RW infiltration. However, the unconfined groundwater storage still declined overall from 2007 to 2014 due to groundwater exploitation. The storage began to recover after groundwater extraction reduction, rising from 3.76×108 m3 at the end of 2014 to 3.85×108 m3 at the end of 2017. Cl- concentrations varied from 5~75 mg/L before RW recharge to 50~130 mg/L in two years (2007–2009), and then remained stable. The zones of the unconfined groundwater quality-affected by RW infiltration increased from 11.7 km2 in 2008 to 26.7 km2 in 2017. Cl- loads of the unconfined groundwater increased from 1.66×104 t in 2008 to 3.8×103 t in 2017, while NO3-N loads decreased from 29.8 t in 2008 to 11.9 t in 2017 annually in the zones. We determined the maximum area of the unconfined groundwater quality affected by RW, and groundwater outside this area not affected by RW recharge keeps its original state. The RW recharge to the river channel in the study area is beneficial to increase the groundwater table and unconfined groundwater storage with lesser environmental impacts.

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1171 ◽  
Author(s):  
Mitja Janža ◽  
Joerg Prestor ◽  
Simona Pestotnik ◽  
Brigita Jamnik

The assurance of drinking water supply is one of the biggest emerging global challenges, especially in urban areas. In this respect, groundwater and its management in the urban environment are gaining importance. This paper presents the modeling of nitrogen load from the leaky sewer system and from agriculture and the impact of this pressure on the groundwater quality (nitrate concentration) in the urban aquifer located beneath the City of Ljubljana. The estimated total nitrogen load in the model area of 58 km2 is 334 ton/year, 38% arising from the leaky sewer system and 62% from agriculture. This load was used as input into the groundwater solute transport model to simulate the distribution of nitrate concentration in the aquifer. The modeled nitrate concentrations at the observation locations were found to be on average slightly lower (2.7 mg/L) than observed, and in general reflected the observed contamination pattern. The ability of the presented model to relate and quantify the impact of pressures from different contamination sources on groundwater quality can be beneficially used for the planning and optimization of groundwater management measures for the improvement of groundwater quality.


2019 ◽  
Vol 33 (1) ◽  
pp. 16 ◽  
Author(s):  
Setyawan Purnama

Tujuan dari penelitian ini adalah (1) mengetahui sistem akuifer di daerah penelitian, (2) menghitung ketersediaan airtanah pada akuifer tidak tertekan dan (3) menganalisis kualitas airtanahnya. Sistem akuifer diketahui dengan melakukan interpretasi data geolistrik. Potensi akuifer tidak tertekan dihitung secara kualitatif melalui skoring dan tumpang susun antara Peta Kedalaman Muka Airtanah, Peta Fluktuasi Airtanah dan Peta Kualitas Airtanah. Volume akuifer ditentukan berdasarkan perkalian antara luas wilayah masing-masing potensi dan tebal akuifer. Ketersediaan airtanah dihitung berdasarkan asumsi aliran airtanah statik, sedangkan hasil aman pengambilan airtanah ditentukan berdasarkan parameter fluktuasi airtanah, luas akuifer dan spesifik yield. Kualitas air dianalisis berdasarkan pengambilan sampel air pada sumur gali. Hasil penelitian menunjukkan bahwa di daerah penelitian ditemukan adanya akuifer semi tertekan dan akuifer tidak tertekan. Ditinjau dari potensinya, ketersediaan airtanah pada akuifer tidak tertekan sebesar 1.205.967.345 m3, dengan hasil aman pengambilan airtanah sebesar  54.585.307 m3/tahun. Untuk kualitas air, secara umum baik, meskipun beberapa parameter seperti kalsium, magnesium, mangan dan COD kadarnya telah melampaui baku mutu  di beberapa sampel.ABSTRACT The objectives of the research are (1) knowing the aquifer system in research area, (2) calculate groundwater availability in unconfined aquifer and (3) analysis the groundwater quality. Aquifer system is known by interpretation of geoelectric data. Groundwater potency is calculated qualitatively by scoring and overlay of Groundwater Depth Map, Groundwater Fluctuation Map and Groundwater Quality Map. Aquifer volume is calculated by multiplied area width of each potency and aquifer thickness. Amount of groundwater is calculated base on static groundwater flow assumption, whereas safe yield of groundwater exploitation is determined base on parametre groundwater fluctuation, aquifer width and specific yield. Groundwater quality are analized by groundwater samples that taken from dug well. Result of research show that there are two aquifer type in research area i.e. semi confined aquifer and unconfined aquifer. The potency of unconfined aquifer is 1.205.967.345 m3, with safe yield 54.585.307 m3/year. For groundwater quality, generally good, although some parameters have concentration exceeded the standard in some samples such as calcium, magnesium, manganese and COD.


2020 ◽  
Vol 7 (2) ◽  
pp. 101-112
Author(s):  
Nenad Mikulić ◽  
Roko Andričević ◽  
Hrvoje Gotovac ◽  
Matea Kalčiček ◽  
Bojana Nardi

Disposal of household and industrial waste at the Piškornica site began in 1982 on what was then an unmanaged landfill cell, which allowed contamination to pass into underground layers. Landfill rehabilitation was conducted between 2005 and 2013 and conformed to the environmental protection conditions and measures that were prescribed by an EIA procedure, but rehabilitation still has not been fully completed. An environmental permit was issued for rehabilitation of the landfill. The decision and environmental permit prescribed groundwater quality monitoring. Prior to these documents, five piezometers were placed into operation in 1991. The objective of this paper is to determine the potential differences in ground and surface water quality that may have resulted from landfill operations, effectiveness of the rehabilitation efforts, and the potential risk of contamination of the Ivanščak water well. The results of the research were subjected to statistical analyses (e.g., T-test and ANOVA). Based on the regional flow model, a numerical groundwater flow model and contamination transport model were created, which provided scenarios for the potential spread of pollution from the Piškornica landfill while considering different water well operation regimes. It was concluded that a) even though rehabilitation has not been completed, the groundwater quality status improved and b) none of the analysed real flow scenarios generated redirection of streamline patterns towards the Ivanščak water well. Considering future development and likely increase of the Ivanščak well capacity, the expansion of monitoring was proposed for additional measuring locations


2012 ◽  
Vol 34 (2) ◽  
pp. 3-17 ◽  
Author(s):  
Mieczysław Chalfen ◽  
Beata Głuchowska ◽  
Leszek Pływaczyk

Abstract Groundwater table levels in a river valley depend, among other factors, on meteorological and hydrogeological conditions, land use and water levels in watercourses. The primary role of a watercourse is to collect surface and groundwater, and it becomes an infiltrating watercourse at high water levels. Changes in groundwater levels and the range of these changes depend chiefly on the shape, height and duration of the flood wave in the river channel. The assessment of flood wave impact on groundwater was based on long-term measurements of groundwater levels in the Odra valley and observations of water levels in the river channel. Simulations were performed with the use of in-house software FIZ (Filtracja i Zanieczyszczenia; Filtration and Contamination), designed for modelling unsteady water flows within a fully saturated zone. A two-dimensional model with two spatial variables was employed. The process of groundwater flow through a porous medium, non-homogeneous in terms of water permeability, was described with Boussinesq equation. The equation was solved with the use of finite element method. The model was applied to assess groundwater level fluctuations in the Odra valley in the context of actual flood waves on the river. Variations in groundwater table in the valley were analysed in relation to selected actual flood water levels in the Odra in 2001-2003 and 2010. The period from 2001 to 2003 was used to verify the model. A satisfactory agreement between the calculated and the measured values was obtained. Based on simulation calculations, it was proved that flood waves observed in 2010 caused a rise in groundwater table levels in a belt of approximately 1000 metres from the watercourses. It was calculated that at the end of hydrological year 2009/2010, the highest growths, of up to 0.80 m, were observed on piezometers located close to the Odra river channel. The passage of several flood waves on the Odra caused an increase of subsurface retention by 3.0% compared to the initial state.


2014 ◽  
Vol 6 (2) ◽  
pp. 120-125
Author(s):  
Thi Thanh Thuy Tran ◽  
Van Lam Nguyen ◽  
Huu On Dang

Thai Binh is a coastal province of Red River Delta in Vietnam, having administrative boundaries at the river systems and coastlines that cause groundwater quality varies complicatedly. Today in Thai Binh province, the groundwater in Holocene and Pleistocene aquifers is exploited for domestic use. But, beside the quality of groundwater in this region is not uniform, it is interspersed between salt water and fresh water zones in Holocene and Pleistocene aquifers. Nowaday, under the force of groundwater exploitation activity for domestic purposes, agricultural activities, the impact of climate change and sea level rise issues, the quality of distribution of groundwater here change. According to the recent research results, groundwater quality and distribution of salt water - fresh water there have many changes compared with the research results of the Northern Division for Water resources Planning and Investigation in the year 1996. For the the Holocene aquifer (qh), distribution area of salt water zone has been narrowed. Besides, saline cleaning process occurred in some coastal areas in Tien Hai, Thai Thuy and a part of Quynh Phu district. For the Pleistocene aquifer (qp), compared with research result in 1996, the boundaries between saline and fresh water at the present time is not change so much. By assessing the status of the distribution of saline and fresh water zones in groundwater in Thai Binh and the movement of this boundary, author’s research results will be the basis that helps the managers give out reasonable exploiting and sustainable using methods for these natural resources. Thái Bình là một tỉnh ven biển thuộc vùng châu thổ sông Hồng của Việt Nam, được bao bọc bởi hệ thống sông biển khép kín làm cho chất lượng nước ngầm biến đổi rất phức tạp. Hiện nay, tại Thái Bình có 2 tầng chứa nước chính phục vụ ăn uống sinh hoạt là tầng chứa nước Holocen và tầng chứa nước Pleistocen. Tuy nhiên, chất lượng nước ngầm ở các tầng chứa nước này không đồng đều, có sự phân bố xen kẽ giữa các khoảnh nước mặn và nước nhạt. Hiện nay, dưới tác động của hoạt động dân sinh, sản xuất nông nghiệp, khai thác nước phục vụ sinh hoạt cùng ảnh hưởng của biến đổi khí hậu và sự dâng cao của mực nước biển đã làm thay đổi chất lượng và quy mô phân bố nước ngầm khu vực. Theo những kết quả nghiên cứu mới nhất của tác giả cho thấy diện tích phân bố của các vùng nước mặn - nước nhạt của các tầng chứa nước trên địa bàn tỉnh đã có nhiều thay đổi so với kết quả nghiên cứu trước đây của Liên đoàn Địa chất thủy văn – Địa chất công trình miền Bắc năm 1996. Với tầng chứa nước Holocen, diện tích phân bố các khoảnh nước mặn bị co hẹp và đang có sự nhạt hóa tại một số khu vực ven biển thuộc Huyện Tiền Hải, Thái Thụy và một phần thuộc huyện Quỳnh Phụ. Trong tầng chứa nước Pleistocen (qp), so với kết quả nghiên cứu năm 1996, ranh giới mặn – nhạt tại thời điểm hiện tại đã có sự thay đổi nhưng không lớn. Kết quả nghiên cứu này là cơ sở giúp các nhà quản lý đề xuất giải pháp, phân vùng khai thác và sử dụng hợp lý nguồn tài nguyên thiên nhiên này đặc biệt trước tình trạng khan hiếm nước như hiện nay trên địa bàn tỉnh Thái Bình.


2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Munawar Cholil

The quality of groundwater of unonfined aquifer with growing population density is endangered by population. This may cause serious problem as greatest portion of the population utility groundwater of unconfined aquifer as their drinking water. This research is aim at studying the difference in quality of groundwater of unonfined aquifer in Surakarta Munipicality by settlement units, and studying the impact settlement factors and groundwater depth on the quality of groundwater of unonfined aquifer. The research was executed by a survey methhod, taking 44 units of groundwater of unonfined aquifer samples at stratified proportional random from 44 villages. The samples were analyzed at the laboratory of Local Drinking Water Company (PDAM) of Surakarta. Data were analyzed using by stiff diagram, variance analysis, and multiple regression. The research reveals that there is very little differences in the quality of free groundwater in Surakarta, as it is shown by same chemical properties. Several chemical properties were found very high in concentration, but the rest were simultaniously low. On the basis of minimum quality of drinking water coli content have exeeded the allowed limit for drinking water.Among the settlement units observed, there were no significant differences in the physical, chemical (except pH), bacteriological factors. This means that differences among various depth of water. Electrical onductivity (EC), Na, Mg, H2CO3, H2SO4, and NH3 were found different among various depth of water table. Major chemical conentration were significant with geology formation. Population density, built up areas, size of settlement, building density, and the condition of drainage simultaniously affect the quality of free ground water. No differences among settlement units was observed the most important fators determining the free groundwater quality was population density.


2017 ◽  
Vol 43 (4) ◽  
pp. 1716
Author(s):  
E. Karapanos ◽  
W. Burgess ◽  
N. Lambrakis

The objective of this paper is to study the impact of a reflooding of the former Mouria Lake on the hydraulic state of the Pyrgos area. The hydrogeological data acquired through field work were combined with the volumetric budget and the hydrological data from the entire Alfios River catchment in order to build the conceptual and numerical model of the groundwater flow system, which confirmed the hydraulic state before the drainage of the Mouria Lake. The model was also used to predict the future hydraulic state in case stresses change. For this purpose, Flowpath II, a numerical groundwater flow model, was used to evaluate the impacts of groundwater exploitation in the alluvium unconfined aquifer that is developing in the Holocene deposits. Due to the connection of the aquifer with the surface drainage canals near the coastal zone, the conceptual model was built upon irrigation data, rainfall data, and pumping rate data from the pumping stations that drain the area of the former Mouria Lake. These data were inserted in the model which was calibrated using a 24- month set of piezometric measurements. The simulation results show that the groundwater level before the drainage of the lake was 2m higher than the present situation and the same scenario will happen in case of reflooding the drained lake. Today, the pumping stations keep the groundwater level near the sea level throughout the hydrological year.


2015 ◽  
Vol 3 (2) ◽  
Author(s):  
Doni Prakasa Eka Putra

Since 1980s, accelerated by urbanization, Yogyakarta City was shifting to many directions defined by main road networks and service centres. Urbanization has transformed rural dwellings to become urban settlements and generated urban agglomeration area. Until now, new business centres, education centres and tourism centres are growing hand in hand with new settlements (formal or informal) without proper provision of water supply and sanitation system. This condition increase the possibility of groundwater contamination from urban wastewater and a change of major chemistry of groundwater as shallow unconfined aquifer is lying under Yogyakarta City. To prove the evolution of groundwater chemistry, old data taken on 1980s were comparing with the recent groundwater chemistry data. The evaluation shows that nitrate content of groundwater in 1980s was a minor anion, but nowadays become a major anion, especially in the shallow groundwater in the centre of Yogyakarta City. This evidence shows that there is an evolution of groundwater chemistry in shallow groundwater below Yogyakarta City due to contamination from un-proper on-site sanitation system. Keywords: Urbanization, Yogyakarta city, rural dwellings, settlements, agglomeration, contamination, groundwater


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samaneh Ashraf ◽  
Ali Nazemi ◽  
Amir AghaKouchak

AbstractUsing publicly-available average monthly groundwater level data in 478 sub-basins and 30 basins in Iran, we quantify country-wide groundwater depletion in Iran. Natural and anthropogenic elements affecting the dynamics of groundwater storage are taken into account and quantified during the period of 2002–2015. We estimate that the total groundwater depletion in Iran to be ~ 74 km3 during this period with highly localized and variable rates of change at basin and sub-basin scales. The impact of depletion in Iran’s groundwater reserves is already manifested by extreme overdrafts in ~ 77% of Iran’s land area, a growing soil salinity across the entire country, and increasing frequency and extent of land subsidence in Iran’s planes. While meteorological/hydrological droughts act as triggers and intensify the rate of depletion in country-wide groundwater storage, basin-scale groundwater depletions in Iran are mainly caused by extensive human water withdrawals. We warn that continuation of unsustainable groundwater management in Iran can lead to potentially irreversible impacts on land and environment, threatening country’s water, food, socio-economic security.


2021 ◽  
Vol 11 (8) ◽  
pp. 3481
Author(s):  
Volker Pasler ◽  
Frederik Arbeiter ◽  
Christine Klein ◽  
Dmitry Klimenko ◽  
Georg Schlindwein ◽  
...  

This work continues the development of a numerical model to simulate transient tritium transport on the breeder zone (BZ) level for the EU helium-cooled pebble bed (HCPB) concept for DEMO. The basis of the model is the open-source field operation and manipulation framework, OpenFOAM. The key output quantities of the model are the tritium concentration in the purge gas and in the coolant and the tritium inventory inside the BZ structure. New model features are briefly summarized. As a first relevant application a simulation of tritium transport for a single pin out of the KIT HCPB design for DEMO is presented. A variety of scenarios investigates the impact of the permeation regime (diffusion-limited vs. surface-limited), of an additional hydrogen content of 300 Pa H2 in the purge gas, of the released species (HT vs. T2), and of the choice of species-specific rate constants (recombination constant of HT set twice as for H2 and T2). The results indicate that the released species plays a minor role for permeation. Both permeation and inventory show a considerable dependence on a possible hydrogen addition in the purge gas. An enhanced HT recombination constant reduces steel T inventories and, in the diffusion-limited case, also permeation significantly. Scenarios with 80 bar vs. 2 bar purge gas pressure indicate that purge gas volumetric flow is decisive for permeation.


Sign in / Sign up

Export Citation Format

Share Document