Effect of specific surface area of raw material Fe2O3 on magnetic properties of YIG

2018 ◽  
Vol 449 ◽  
pp. 157-164 ◽  
Author(s):  
Ching-Chien Huang ◽  
Wei-Zong Zuo ◽  
Yung-Hsiung Hung ◽  
Jing-Yi Huang ◽  
Ming-Feng Kuo ◽  
...  
2014 ◽  
Vol 1015 ◽  
pp. 501-504 ◽  
Author(s):  
Yong Guang Bi ◽  
Xu Si Xu

Papers with Ca (NO3)2• 4H2O and (NH4)2HPO4as raw material, prepared by ionic liquids assisted nanoHAP, resulting hexagonal nanoHAP are crystal grain size are 10-20nm level, are smaller nanometer range ; specific surface area, the findings show that ionic liquids have the technology to promote the significance of the preparation method can provide a reference for large-scale preparation of biomedical nanomaterials.


2014 ◽  
Vol 633-634 ◽  
pp. 451-454
Author(s):  
Quan Xiao Liu ◽  
Dan Xi Li

SEM and Automated Surface Area & Pore Size Analyzer were used to characterize surface morphology and specific surface area and the pore size distribution of fibers. The results showed that specific surface area and pore size distribution increase after ultrasonication. The ash content of the composites of ultrasonic treated fiber is larger than the untreated fiber, and the magnetic properties show a good superparamagnetic behavior.


2010 ◽  
Vol 20 (5) ◽  
pp. 945-952 ◽  
Author(s):  
Yanyan Sun ◽  
Guangbin Ji ◽  
Mingbo Zheng ◽  
Xiaofeng Chang ◽  
Shandong Li ◽  
...  

2011 ◽  
Vol 695 ◽  
pp. 553-556
Author(s):  
Yu Hong Tian ◽  
Xin Zhe Lan ◽  
Qiu Li Zhang ◽  
Juan Qin Xue ◽  
Yong Hui Song ◽  
...  

The low-cost blue coke industrial by-product, blue coke powder was used as raw material for the production of porous carbons adsorbent by steam activating at temperature of 800°C under the atmosphere of N2 for 60 minutes. The specific surface area and pore properties of the adsorbent were characterized by using N2 adsorption-desorption isotherms. Furthermore, the adsorption effects of the adsorbent for ammonia nitrogen in coking wastewater were investigated in terms of particle size, dosage of absorbent and adsorption time. The results show that the specific surface area is 620.94m2/g, the total pore volume is 0.4442cm3/g and the average mesopore size is 4.5808nm, the adsorbent possesses predominant mesoporous structures. In aeration, the removal rate of ammonia nitrogen can reach to 39.5% under the conditions of the ammonia nitrogen concentration of 625mg/L, the dosage of adsorbent 10g/L at the adsorption time of 60 minutes.


2015 ◽  
Vol 1090 ◽  
pp. 154-159
Author(s):  
Sheng Zhou Zhang ◽  
Hong Ying Xia ◽  
Li Bo Zhang ◽  
Jin Hui Peng ◽  
Jian Wu ◽  
...  

Bamboo as the raw material is carbonized to prepare high specific surface area activated carbon by microwave heating under nitrogen atmosphere in our present work. Influences of activation agents on the preparation of activated carbon are studied. The results show that activation agents have a significant influence on the preparation of activated carbon. Under the heating time of 15 min, the adsorption capacity of the activated carbon prepared utilizing KOH as activation agent is the best. When the KOH/C ratio is 4, the iodine number and yield of activated carbon are 2298 mg/g and 39.82%, respectively. The BET specific surface area, total pore volume and average pore diameter of activated carbon are 3441 m2/g, 2.093 ml/g and 2.434 nm, respectively. The micropore volume of 1.304 ml/g is 62.30% of total pore volume, indicating that the activated carbon is microporous activated carbon.


2021 ◽  
Author(s):  
Yong Ai ◽  
Na Yin ◽  
Yanquan Ouyang ◽  
Yuanxin Xu ◽  
Pengfei Yang

Abstract In order to make full use of waste as raw materials to prepare low-cost zeolite, develop green chemical industry and achieve the purpose of treating waste with waste. High-purity zeolite X was prepared by the alkaline fusion hydrothermal method (AFH) using waste basalt powder as raw material, and was used as an adsorbent to investigate the adsorption performance for uranium-containing wastewater. The structure, morphology, specific surface area, chemical composition, chemical bonds, characteristic functional groups and chemical states of surface elements of the samples were characterized by XRD, SEM, BET, EDS, FT-IR and XPS. zeolite X with high crystallinity and rich hydroxyl/carboxyl groups was successfully synthesized by the AFH method, and its specific surface area was as high as 623.4 m2·g-1. When the adsorption time (t) is 720 min, the adsorption temperature (T) is 30 ℃, the initial uranium (VI) concentration is (C0) 35 mg/L, pH is 6.0, and the adsorbent dosage (m) is 5/35 mg/mL, the equilibriu adsorption capacity of zeolite X for uranyl ions is 228.4 mg·g-1. Thermodynamic results show that the adsorption process of uranyl ions by zeolite X is spontaneous and exothermic. Freundlich isotherms and quasi-second-order models are suitable to describe the adsorption process of uranyl ions by zeolite X. XPS analysis results show that -OH and -COOH play an important role in the adsorption process. At the same time, there is ion exchange between UO22+ and zeolite during the adsorption process.


2020 ◽  
pp. 83-92
Author(s):  
Aleksandr Petrovich Voznyakovskii ◽  
Anatoliy Petrovich Karmanov ◽  
Anna Yur'yevna Neverovskaya ◽  
Aleksey Aleksandrovich Voznyakovskii ◽  
Lyudmila Sergeyevna Kocheva ◽  
...  

The possibility of the carbonization of the Sosnowskyi's hogweed (Heracléum sosnówskyi) biomass for obtaining the carbonic nanmaterials was studied. The characteristic of component composition is given and the parameters of the superficially-porous structure of plant biomass are established. The isotherms of adsorption and desorption of nitrogen on the surface are studied and it is shown that they relate to the type II according to the IUPAC classification. The distribution of times according to the sizes is investigated and it is established that the basic portion of the pore space of the vegetable raw material forms the mezopors with an average width 3.5 of nm. The specific surface area according to Brunauer-Emmet-Teller is determined, which composed 16.4 m2/g. Using a method of the carbonization of organic materials under the effect of local extremely high temperatures and oxidizers the synthesis of nanocarbonic powders, which are formed under the conditions of the self-propagating high-temperature synthesis (SHS method), was carried out. By the methods of spectral analysis (Raman spectroscopy, X-ray diffractometry) and electron microscopy it is shown that from their morphometric parameters the particles of the obtained carbonized product correspond to 2D nanocarbon in the form of grafenic nanoplates. The low-defect planar surface and the presence of the oxygen-containing terminal groups are the characteristic properties of new product. The specific surface area, which composed 179.1 m2/g, is determined. The specific surface area, which composed 179.1 m2/g, is determined. It is established that the micropores introduce the basic contribution to the specific surface area of nanomaterial on the basis of the Sosnowskyi's hogweed biomass.


RSC Advances ◽  
2021 ◽  
Vol 11 (53) ◽  
pp. 33208-33218
Author(s):  
Zhaojin Li ◽  
Qian Liu ◽  
Lizhi Sun ◽  
Ning Li ◽  
Xiaofeng Wang ◽  
...  

3D porous carbon with ultra-high specific surface area and excellent electrochemical performance is synthesized by a simple activation and carbonization process through adopting biomass yam waste as raw material.


2021 ◽  
pp. 004051752110371
Author(s):  
Hong Wu ◽  
Chengkun Liu ◽  
Zhiwei Jiang ◽  
Zhi Yang ◽  
Xue Mao ◽  
...  

In this study, a lignin/polyacrylonitrile (PAN) composite nanofiber membrane is prepared by electrospinning and used as the precursor to prepare flexible carbon nanofibers (CNFs) through pre-oxidation and carbonization. The micromorphology, crystal structure, pore size distribution and specific surface area of the CNFs are characterized by field emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and specific surface adsorption analysis, respectively. The electrochemical properties of the CNF membrane are also investigated by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy due to its potential application in binder-free electrode materials for supercapacitors. We successfully prepared flexible CNFs with an average diameter of about 539 nm and a specific surface area of 1053.78 m2/g when the mass ratio of lignin to PAN was 9:1 in a solution concentration of 28 wt%. The CNFs are loaded onto nickel foam to prepare the electrode materials for supercapacitors without a binder. When the current density is 0.5 A/g, the specific capacitance could be up to 201.27 F/g and the equivalent series resistance is only 0.57 Ω, which shows an excellent electrochemical performance. This study not only provides a theoretical basis for the high-value utilization of lignin and the preparation of flexible lignin/PAN-based CNFs, but also provides a new type of environmentally friendly raw material for the electrodes of supercapacitors and could be helpful to alleviate the energy crisis and environmental pollution.


Sign in / Sign up

Export Citation Format

Share Document