Neurodegeneration and neuroprotection in multiple sclerosis and other neurodegenerative diseases

2006 ◽  
Vol 176 (1-2) ◽  
pp. 198-215 ◽  
Author(s):  
Suhayl Dhib-Jalbut ◽  
Douglas L. Arnold ◽  
Don W. Cleveland ◽  
Mark Fisher ◽  
Robert M. Friedlander ◽  
...  
Impact ◽  
2019 ◽  
Vol 2019 (8) ◽  
pp. 24-26
Author(s):  
Jun-ichi Satoh

Brain pathology expert Dr Jun-ichi Satoh, from the Department of Bioinformatics and Molecular Neuropathology of Meiji Pharmaceutical University in Tokyo, is drawing on his expertise on neurology and neuroimmunology to delve into some of the more complex diseases impacting the human brain. His knowledge and expertise have allowed him to direct his research interests to study neurodegenerative diseases, such as Alzheimer's disease (AD), and neuroinflammatory diseases, such as multiple sclerosis (MS), and the analysis of their molecular pathogenesis by using a bioinformatics approach. His current focus is on Nasu-Hakola disease (NHD), a disease whose rarity has posed significant barriers towards performing large-scale clinical research in order to understand what exactly causes this disease and develop effective novel therapies.


Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 128
Author(s):  
Leonel Pereira ◽  
Ana Valado

Edible marine algae are rich in bioactive compounds and are, therefore, a source of bioavailable proteins, long chain polysaccharides that behave as low-calorie soluble fibers, metabolically necessary minerals, vitamins, polyunsaturated fatty acids, and antioxidants. Marine algae were used primarily as gelling agents and thickeners (phycocolloids) in food and pharmaceutical industries in the last century, but recent research has revealed their potential as a source of useful compounds for the pharmaceutical, medical, and cosmetic industries. The green, red, and brown algae have been shown to have useful therapeutic properties in the prevention and treatment of neurodegenerative diseases: Parkinson, Alzheimer’s, and Multiple Sclerosis, and other chronic diseases. In this review are listed and described the main components of a suitable diet for patients with these diseases. In addition, compounds derived from macroalgae and their neurophysiological activities are described.


Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Cadiele Oliana Reichert ◽  
Debora Levy ◽  
Sergio P. Bydlowski

The human body has biological redox systems capable of preventing or mitigating the damage caused by increased oxidative stress throughout life. One of them are the paraoxonase (PON) enzymes. The PONs genetic cluster is made up of three members (PON1, PON2, PON3) that share a structural homology, located adjacent to chromosome seven. The most studied enzyme is PON1, which is associated with high density lipoprotein (HDL), having paraoxonase, arylesterase and lactonase activities. Due to these characteristics, the enzyme PON1 has been associated with the development of neurodegenerative diseases. Here we update the knowledge about the association of PON enzymes and their polymorphisms and the development of multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD) and Parkinson’s disease (PD).


2020 ◽  
Author(s):  
Laura Casares ◽  
Juan Diego Unciti ◽  
Maria Eugenia Prados ◽  
Diego Caprioglio ◽  
Maureen Higgins ◽  
...  

ABSTRACTOxidative stress and inflammation in the brain are two key hallmarks of neurodegenerative diseases (NDs) such as Alzheimer’s, Parkinson’s, Huntington’s and multiple sclerosis. The axis NRF2-BACH1 has anti-inflammatory and anti-oxidant properties that could be exploited pharmacologically to obtain neuroprotective effects. Activation of NRF2 or inhibition of BACH1 are, individually, promising therapeutic approaches for NDs. Compounds with dual activity as NRF2 activators and BACH1 inhibitors, could therefore potentially provide a more robust antioxidant and anti-inflammatory effects, with an overall better neuroprotective outcome. The phytocannabinoid cannabidiol (CBD) inhibits BACH1 but lacks significant NRF2 activating properties. Based on this scaffold, we have developed a novel CBD derivative that is highly effective at both inhibiting BACH1 and activating NRF2. This new CBD derivative provides neuroprotection in cell models of relevance to Huntington’s disease, setting the basis for further developments in vivo.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shashank Kumar Maurya ◽  
Neetu Bhattacharya ◽  
Suman Mishra ◽  
Amit Bhattacharya ◽  
Pratibha Banerjee ◽  
...  

Microglia, a type of innate immune cell of the brain, regulates neurogenesis, immunological surveillance, redox imbalance, cognitive and behavioral changes under normal and pathological conditions like Alzheimer’s, Parkinson’s, Multiple sclerosis and traumatic brain injury. Microglia produces a wide variety of cytokines to maintain homeostasis. It also participates in synaptic pruning and regulation of neurons overproduction by phagocytosis of neural precursor cells. The phenotypes of microglia are regulated by the local microenvironment of neurons and astrocytes via interaction with both soluble and membrane-bound mediators. In case of neuron degeneration as observed in acute or chronic neurodegenerative diseases, microglia gets released from the inhibitory effect of neurons and astrocytes, showing activated phenotype either of its dual function. Microglia shows neuroprotective effect by secreting growths factors to heal neurons and clears cell debris through phagocytosis in case of a moderate stimulus. But the same microglia starts releasing pro-inflammatory cytokines like TNF-α, IFN-γ, reactive oxygen species (ROS), and nitric oxide (NO), increasing neuroinflammation and redox imbalance in the brain under chronic signals. Therefore, pharmacological targeting of microglia would be a promising strategy in the regulation of neuroinflammation, redox imbalance and oxidative stress in neurodegenerative diseases. Some studies present potentials of natural products like curcumin, resveratrol, cannabidiol, ginsenosides, flavonoids and sulforaphane to suppress activation of microglia. These natural products have also been proposed as effective therapeutics to regulate the progression of neurodegenerative diseases. The present review article intends to explain the molecular mechanisms and functions of microglia and molecular dynamics of microglia specific genes and proteins like Iba1 and Tmem119 in neurodegeneration. The possible interventions by curcumin, resveratrol, cannabidiol, ginsenosides, flavonoids and sulforaphane on microglia specific protein Iba1 suggest possibility of natural products mediated regulation of microglia phenotypes and its functions to control redox imbalance and neuroinflammation in management of Alzheimer’s, Parkinson’s and Multiple Sclerosis for microglia-mediated therapeutics.


2021 ◽  
Author(s):  
Sagnik Sen ◽  
Ashmita Dey ◽  
Dwipanjan Sanyal ◽  
Ujjwal Maulik ◽  
Krishnananda Chattopadhyay

For neurodegenerative diseases, the impact of immunological markers is one of the modern research areas. It has been observed that neuroinflammation increases the cellular precipitation of some of the key proteins associated with neurodegenerative diseases. Therefore, the possibility of functional loss can be enhanced due to neuroinflammation which leads to the initiation of any related diseases. In this regard, autoantibodies, which are known for their autophagy nature, can be considered as key elements for early diagnostic as well as early therapeutics. In this article, we have proposed a comprehensive framework to unveil the diagnostic as well as the therapeutic possibility of the autoantibodies which are largely associated with Mild-Moderate Alzheimer's Disease, Early-Stage Parkinson's Disease, and Multiple Sclerosis. Here, we have introduced a new concept of average p-value where multiple p-values of an autoantibody in a singular disease have been considered as a multi-occurrence of that sample in cellular systems. Also, multiple proteins from a single protein family under a differentially expressed range have been prioritized. As a result, the top ten autoantibodies have been selected for further study and also considered as diagnostic markers. Interestingly, most of the selected autoantibodies are either cytokines or immunoglobulins. Subsequently, we have performed an evolutionary sequence-structure space study to identify the druggable structural facet for the selected autoantibodies. To make the therapeutic perspective more robust, we have introduced the concept of protein moonlighting. Hence, it provides more robustness in therapeutic identification. Finally, two autoantibodies i.e., Q9NYV4 and P01602 are identified as a novel marker.


2015 ◽  
Vol 12 (1) ◽  
pp. 67-76 ◽  
Author(s):  
R Shrestha ◽  
Shakya Shrestha ◽  
O Millington ◽  
J Brewer ◽  
T Bushell

Neurodegenerative disease is a progressive loss of neurons from central nervous system and has a huge impact on health care system. Various causes have been proposed of which inflammation has been suggested to be a probable key factor in the most of such conditions. The involvement of immune cells including lymphocytes in such diseased condition of the CNS supports this notion. The effective therapy for these diseases has been sought for more than a half century but still lacking such therapy. On such basis this review article has mainly focussed on evidence of the involvement of immune cells in various neurodegenerative diseases including Alzheimer’s disease, Parkinson’s diseases and Multiple sclerosis and suggests a possible therapy of such diseased conditions of the CNS by the modulation of immune system.Kathmandu University Medical Journal Vol.12(1) 2014: 67-76


Brain ◽  
2019 ◽  
Vol 142 (10) ◽  
pp. 2979-2995 ◽  
Author(s):  
Barbara Morquette ◽  
Camille A Juźwik ◽  
Sienna S Drake ◽  
Marc Charabati ◽  
Yang Zhang ◽  
...  

Dysregulation of miRNAs has been observed in many neurodegenerative diseases, including multiple sclerosis. Morquette et al. show that overexpression of miR-223-3p prevents accumulation of axonal damage in a rodent model of multiple sclerosis, in part through regulation of glutamate receptor signalling. Manipulation of miRNA levels may have therapeutic potential.


Author(s):  
Mariana Oliveira ◽  
André Padrão ◽  
André Ramalho ◽  
Mariana Lobo ◽  
Ana Cláudia Teodoro ◽  
...  

Despite the vast evidence on the environmental influence in neurodegenerative diseases, those considering a geospatial approach are scarce. We conducted a systematic review to identify studies concerning environmental atmospheric risk factors for neurodegenerative diseases that have used geospatial analysis/tools. PubMed, Web of Science, and Scopus were searched for all scientific studies that included a neurodegenerative disease, an environmental atmospheric factor, and a geographical analysis. Of the 34 included papers, approximately 60% were related to multiple sclerosis (MS), hence being the most studied neurodegenerative disease in the context of this study. Sun exposure (n = 13) followed by the most common exhaustion gases (n = 10 for nitrogen dioxide (NO2) and n = 5 for carbon monoxide (CO)) were the most studied atmospheric factors. Only one study used a geospatial interpolation model, although 13 studies used remote sensing data to compute atmospheric factors. In 20% of papers, we found an inverse correlation between sun exposure and multiple sclerosis. No consensus was reached in the analysis of nitrogen dioxide and Parkinson’s disease, but it was related to dementia and amyotrophic lateral sclerosis. This systematic review (number CRD42020196188 in PROSPERO’s database) provides an insight into the available evidence regarding the geospatial influence of environmental factors on neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document