In vivo multimodal imaging of inflammation in articular cartilage after joint injury

2021 ◽  
Vol 29 ◽  
pp. S346-S347
Author(s):  
A. Ruiz ◽  
A. Duarte ◽  
D. Bravo ◽  
E. Ramos ◽  
C. Zhang ◽  
...  
Development ◽  
2022 ◽  
Author(s):  
Ling Yu ◽  
Yu-Lieh Lin ◽  
Mingquan Yan ◽  
Tao Li ◽  
Emily Y. Wu ◽  
...  

Amputation injuries in mammals are typically non-regenerative, however joint regeneration is stimulated by BMP9 treatment (Yu et al., 2019) indicating the presence of latent articular chondrocyte progenitor cells. BMP9 induces a battery of chondrogenic genes in vivo, and a similar response is observed in cultures of amputation wound cells. Extended cultures of BMP9 treated cells results in differentiation of hyaline cartilage and single cell RNAseq analysis identified wound fibroblasts as BMP9 responsive. This culture model was used to identify a BMP9 responsive adult fibroblast cell line and a culture strategy was developed to engineer hyaline cartilage for engraftment into an acutely damaged joint. Transplanted hyaline cartilage survived engraftment and maintained a hyaline cartilage phenotype but did not form mature articular cartilage. In addition, individual hypertrophic chondrocytes were identified in some samples indicating that the acute joint injury site can promote osteogenic progression of engrafted hyaline cartilage. The findings identify fibroblasts as a cell source for engineering articular cartilage and establishes a novel experimental strategy that bridges the gap between regeneration biology and regenerative medicine.


Author(s):  
Amparo Ruiz ◽  
Alejandra Duarte ◽  
Dalibel Bravo ◽  
Elisa Ramos ◽  
Chongda Zhang ◽  
...  

2019 ◽  
Vol 20 (3) ◽  
pp. 484 ◽  
Author(s):  
Girish Pattappa ◽  
Brian Johnstone ◽  
Johannes Zellner ◽  
Denitsa Docheva ◽  
Peter Angele

Articular cartilage covers the surface of synovial joints and enables joint movement. However, it is susceptible to progressive degeneration with age that can be accelerated by either previous joint injury or meniscectomy. This degenerative disease is known as osteoarthritis (OA) and it greatly affects the adult population. Cell-based tissue engineering provides a possible solution for treating OA at its earliest stages, particularly focal cartilage lesions. A candidate cell type for treating these focal defects are Mesenchymal Stem Cells (MSCs). However, present methods for differentiating these cells towards the chondrogenic lineage lead to hypertrophic chondrocytes and bone formation in vivo. Environmental stimuli that can stabilise the articular chondrocyte phenotype without compromising tissue formation have been extensively investigated. One factor that has generated intensive investigation in MSC chondrogenesis is low oxygen tension or physioxia (2–5% oxygen). In vivo articular cartilage resides at oxygen tensions between 1–4%, and in vitro results suggest that these conditions are beneficial for MSC expansion and chondrogenesis, particularly in suppressing the cartilage hypertrophy. This review will summarise the current literature regarding the effects of physioxia on MSC chondrogenesis with an emphasis on the pathways that control tissue formation and cartilage hypertrophy.


Life Sciences ◽  
2021 ◽  
pp. 119728
Author(s):  
Fatemeh Dehghani Nazhvani ◽  
Leila Mohammadi Amirabad ◽  
Arezo Azari ◽  
Hamid Namazi ◽  
Simzar Hosseinzadeh ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 902
Author(s):  
Susanne N. Wijesinghe ◽  
Mark A. Lindsay ◽  
Simon W. Jones

Osteoarthritis (OA) and rheumatoid arthritis (RA) are two of the most common chronic inflammatory joint diseases, for which there remains a great clinical need to develop safer and more efficacious pharmacological treatments. The pathology of both OA and RA involves multiple tissues within the joint, including the synovial joint lining and the bone, as well as the articular cartilage in OA. In this review, we discuss the potential for the development of oligonucleotide therapies for these disorders by examining the evidence that oligonucleotides can modulate the key cellular pathways that drive the pathology of the inflammatory diseased joint pathology, as well as evidence in preclinical in vivo models that oligonucleotides can modify disease progression.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


Author(s):  
Zhong Li ◽  
Yikang Bi ◽  
Qi Wu ◽  
Chao Chen ◽  
Lu Zhou ◽  
...  

AbstractTo evaluate the performance of a composite scaffold of Wharton’s jelly (WJ) and chondroitin sulfate (CS) and the effect of the composite scaffold loaded with human umbilical cord mesenchymal stem cells (hUCMSCs) in repairing articular cartilage defects, two experiments were carried out. The in vitro experiments involved identification of the hUCMSCs, construction of the biomimetic composite scaffolds by the physical and chemical crosslinking of WJ and CS, and testing of the biomechanical properties of both the composite scaffold and the WJ scaffold. In the in vivo experiments, composite scaffolds loaded with hUCMSCs and WJ scaffolds loaded with hUCMSCs were applied to repair articular cartilage defects in the rat knee. Moreover, their repair effects were evaluated by the unaided eye, histological observations, and the immunogenicity of scaffolds and hUCMSCs. We found that in vitro, the Young’s modulus of the composite scaffold (WJ-CS) was higher than that of the WJ scaffold. In vivo, the composite scaffold loaded with hUCMSCs repaired rat cartilage defects better than did the WJ scaffold loaded with hUCMSCs. Both the scaffold and hUCMSCs showed low immunogenicity. These results demonstrate that the in vitro construction of a human-derived WJ-CS composite scaffold enhances the biomechanical properties of WJ and that the repair of knee cartilage defects in rats is better with the composite scaffold than with the single WJ scaffold if the scaffold is loaded with hUCMSCs.


2020 ◽  
Vol 16 (S5) ◽  
Author(s):  
Milan Nemy ◽  
Michel Grothe ◽  
Jose Barroso ◽  
Stefan J. Teipel ◽  
Eric Westman ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1571
Author(s):  
Matilde Tschon ◽  
Francesca Salamanna ◽  
Lucia Martini ◽  
Gianluca Giavaresi ◽  
Luca Lorenzini ◽  
...  

The purpose of this study was to verify the efficacy of a single intra-articular (i.a.) injection of a hyaluronic acid-chitlac (HY-CTL) enriched with two low dosages of triamcinolone acetonide (TA, 2.0 mg/mL and 4.5 mg/mL), in comparison with HY-CTL alone, with a clinical control (TA 40 mg/mL) and with saline solution (NaCl) in an in vivo osteoarthritis (OA) model. Seven days after chemical induction of OA, 80 Sprague Dawley male rats were grouped into five arms (n = 16) and received a single i.a. injection of: 40 mg/mL TA, HY-CTL alone, HY-CTL with 2.0 mg/mL TA (RV2), HY-CTL with 4.5 mg/mL TA (RV4.5) and 0.9% NaCl. Pain sensitivity and Catwalk were performed at baseline and at 7, 14 and 21 days after the i.a. treatments. The histopathology of the joint, meniscus and synovial reaction, type II collagen expression and aggrecan expression were assessed 21 days after treatments. RV4.5 improved the local pain sensitivity in comparison with TA and NaCl. RV4.5 and TA exerted similar beneficial effects in all gait parameters. Histopathological analyses, measured by Osteoarthritis Research Society International (OARSI) and Kumar scores and by immunohistochemistry, evidenced that RV4.5 and TA reduced OA features in the same manner and showed a stronger type II collagen and aggrecan expression; both treatments reduced synovitis, as measured by Krenn score and, at the meniscus level, RV4.5 improved degenerative signs as evaluated by Pauli score. TA or RV4.5 treatments limited the local articular cartilage deterioration in knee OA with an improvement of the physical structure of articular cartilage, gait parameters, the sensitivity to local pain and a reduction of the synovial inflammation.


Sign in / Sign up

Export Citation Format

Share Document