Genetics of Kidney Disease Mapping GWAS loci to kidney genes and cell types

Author(s):  
Katherine Xu ◽  
Krzysztof Kiryluk
2021 ◽  
Author(s):  
Anna Reznichenko ◽  
Viji Nair ◽  
Sean Eddy ◽  
Mark Tomilo ◽  
Timothy Slidel ◽  
...  

Current classification of chronic kidney disease (CKD) into stages based on the indirect measures of kidney functional state, estimated glomerular filtration rate and albuminuria, is agnostic to the heterogeneity of underlying etiologies, histopathology, and molecular processes. We used genome-wide transcriptomics from patients kidney biopsies, directly reflecting kidney biological processes, to stratify patients from three independent CKD cohorts. Unsupervised Self-Organizing Maps (SOM), an artificial neural network algorithm, assembled CKD patients into four novel subgroups, molecular categories, based on the similarity of their kidney transcriptomics profiles. The unbiased, molecular categories were present across CKD stages and histopathological diagnoses, highlighting heterogeneity of conventional clinical subgroups at the molecular level. CKD molecular categories were distinct in terms of biological pathways, transcriptional regulation and associated kidney cell types, indicating that the molecular categorization is founded on biologically meaningful mechanisms. Importantly, our results revealed that not all biological pathways are equally activated in all patients; instead, different pathways could be more dominant in different subgroups and thereby differentially influencing disease progression and outcomes. This first kidney-centric unbiased categorization of CKD paves the way to an integrated clinical, morphological and molecular diagnosis. This is a key step towards enabling precision medicine for this heterogeneous condition with the potential to advance biological understanding, clinical management, and drug development, as well as establish a roadmap for molecular reclassification of CKD and other complex diseases.


2020 ◽  
Vol 9 (11) ◽  
pp. 3653
Author(s):  
Shungang Zhang ◽  
Joshua D. Breidenbach ◽  
Benjamin H. Russell ◽  
Jerrin George ◽  
Steven T. Haller

The cluster of differentiation 40 (CD40) is activated by the CD40 ligand (CD40L) in a variety of diverse cells types and regulates important processes associated with kidney disease. The CD40/CD40L signaling cascade has been comprehensively studied for its roles in immune functions, whereas the signaling axis involved in local kidney injury has only drawn attention in recent years. Clinical studies have revealed that circulating levels of soluble CD40L (sCD40L) are associated with renal function in the setting of kidney disease. Levels of the circulating CD40 receptor (sCD40), sCD40L, and local CD40 expression are tightly related to renal injury in different types of kidney disease. Additionally, various kidney cell types have been identified as non-professional antigen-presenting cells (APCs) that express CD40 on the cell membrane, which contributes to the interactions between immune cells and local kidney cells during the development of kidney injury. Although the potential for adverse CD40 signaling in kidney cells has been reported in several studies, a summary of those studies focusing on the role of CD40 signaling in the development of kidney disease is lacking. In this review, we describe the outcomes of recent studies and summarize the potential therapeutic methods for kidney disease which target CD40.


Hypertension ◽  
2021 ◽  
Vol 77 (1) ◽  
pp. 28-38
Author(s):  
Olga Martinez-Arroyo ◽  
Ana Ortega ◽  
Josep Redon ◽  
Raquel Cortes

Hypertension-mediated organ damage frequently includes renal function decline in which several mechanisms are involved. The present review outlines the state of the art on extracellular vesicles in hypertension and hypertension-related renal damage. Emerging evidence indicates that extracellular vesicles, small vesicles secreted by most cell types and body fluids, are involved in cell-to-cell communication and are key players mediating biological processes such as inflammation, endothelial dysfunction or fibrosis, mechanisms present the onset and progression of hypertension-associated kidney disease. We address the potential use of extracellular vesicles as markers of hypertension-mediated kidney damage severity and their application as therapeutic agents in hypertension-associated renal damage. The capacity of exosomes to deliver a wide variety of cargos to the target cell efficiently makes them a potential drug delivery system for treatment of renal diseases.


Toxins ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 161 ◽  
Author(s):  
Nadine Kaesler ◽  
Anne Babler ◽  
Jürgen Floege ◽  
Rafael Kramann

Cardiac remodeling occurs frequently in chronic kidney disease patients and affects quality of life and survival. Current treatment options are highly inadequate. As kidney function declines, numerous metabolic pathways are disturbed. Kidney and heart functions are highly connected by organ crosstalk. Among others, altered volume and pressure status, ischemia, accelerated atherosclerosis and arteriosclerosis, disturbed mineral metabolism, renal anemia, activation of the renin-angiotensin system, uremic toxins, oxidative stress and upregulation of cytokines stress the sensitive interplay between different cardiac cell types. The fatal consequences are left-ventricular hypertrophy, fibrosis and capillary rarefaction, which lead to systolic and/or diastolic left-ventricular failure. Furthermore, fibrosis triggers electric instability and sudden cardiac death. This review focuses on established and potential pathophysiological cardiorenal crosstalk mechanisms that drive uremia-induced senescence and disease progression, including potential known targets and animal models that might help us to better understand the disease and to identify novel therapeutics.


2021 ◽  
Author(s):  
Jun Xu ◽  
Yifang Liu ◽  
Hongjie Li ◽  
Alexander J. Tarashansky ◽  
Colin H. Kalicki ◽  
...  

Like humans, insects rely on precise regulation of their internal environments to survive. The insect renal system consists of Malpighian tubules and nephrocytes that share similarities to the mammalian kidney. Studies of the Drosophila Malpighian tubules and nephrocytes have provided many insights into our understanding of the excretion of waste products, stem cell regeneration, protein reabsorption, and as human kidney disease models. Here, we analyzed single-nucleus RNA sequencing (snRNA-seq) data sets to characterize the cell types of the adult fly kidney. We identified 11 distinct clusters representing renal stem cells (RSCs), stellate cells (SCs), regionally specific principal cells (PCs), garland nephrocyte cells (GCs) and pericardial nephrocytes (PNs). Analyses of these clusters revealed many new interesting features. For example, we found a new, previously unrecognized cell cluster: lower segment PCs that express Esyt2. In addition, we find that the SC marker genes RhoGEF64c, Frq2, Prip and CG10939 regulate their unusual cell shape. Further, we identified transcription factors specific to each cluster and built a network of signaling pathways that are potentially involved in mediating cell-cell communication between Malpighian tubule cell types. Finally, cross-species analysis allowed us to match the fly kidney cell types to mouse kidney cell types and planarian protonephridia - knowledge that will help the generation of kidney disease models. To visualize this dataset, we provide a web-based resource for gene expression in single cells (https://www.flyrnai.org/scRNA/kidney/). Altogether, our study provides a comprehensive resource for addressing gene function in the fly kidney and future disease studies.


Kidney360 ◽  
2021 ◽  
pp. 10.34067/KID.0003582021
Author(s):  
John D. Imig ◽  
Daniel Merk ◽  
Eugen Proschak

Kidney diseases such as acute kidney injury (AKI), chronic kidney disease (CKD), and glomerular nephritis can lead to dialysis and the need for kidney transplantation. The pathologies for kidney diseases are extremely complex, progress at different rates, and involve several cell types and cell-signaling pathways. Complex kidney diseases require therapeutics that can act on multiple targets. In the past ten years, in silico design of drugs has allowed for multi-target drugs to go quickly from concept to reality. Several multi-target drugs have been successfully made that target arachidonic acid pathways and transcription factors to treat inflammatory, fibrotic, and metabolic diseases. Multi-target drugs have also demonstrated great potential to treat diabetic nephropathy and fibrotic kidney disease. These drugs act by decreasing renal transforming growth factor-β (TGF-β) signaling, inflammation, mitochondrial dysfunction, and oxidative stress. There are several other recently developed multi-target drugs that have yet to be tested for their ability to combat kidney diseases. Overall, there is excellent potential for multi-target drugs that act on several cell types and signaling pathways to treat kidney diseases.


2020 ◽  
Author(s):  
Steven Van Laecke ◽  
Wim Van Biesen

Abstract For decades, researchers have been trying to decipher the complex pathophysiology of autosomal dominant polycystic kidney disease (ADPKD). So far these efforts have led to clinical trials with different candidate treatments, with tolvaptan being the only molecule that has gained approval for this indication. As end-stage kidney disease due to ADPKD has a substantial impact on health expenditures worldwide, it is likely that new drugs targeting kidney function will be developed. On the other hand, recent clinical observations and experimental data, including PKD knockout models in various cell types, have revealed unexpected involvement of many other organs and cell systems of variable severity. These novel non-cystic features, some of which, such as lymphopenia and an increased risk to develop infections, should be validated or further explored and might open new avenues for better risk stratification and a more tailored approach. New insights into the aberrant pathways involved with abnormal expression of PKD gene products polycystin-1 and -2 could, for instance, lead to a more directed approach towards early-onset endothelial dysfunction and subsequent cardiovascular disease. Furthermore, a better understanding of cellular pathways in PKD that can explain the propensity to develop certain types of cancer can guide post-transplant immunosuppressive and prophylactic strategies. In the following review article we will systematically discuss recently discovered non-cystic features of PKD and not well-established characteristics. Overall, this knowledge could enable us to improve the outcome of PKD patients apart from ongoing efforts to slow down cyst growth and attenuate kidney function decline.


2021 ◽  
pp. 1-8
Author(s):  
Mengmeng Jiang ◽  
Haide Chen ◽  
Guoji Guo

<b><i>Background:</i></b> The kidney is a highly complex organ that performs diverse functions that are essential for health. Kidney disease occurs when the kidneys are damaged and fail to function properly. Single-cell analysis is a powerful technology that provides unprecedented insights into normal and abnormal kidney cell types and will transform our understanding of the mechanism underlying common kidney diseases. <b><i>Summary:</i></b> Our understanding of kidney disease pathogenesis is limited by the incomplete molecular characterization of cell types responsible for kidney functions. Application of single-cell technologies for the study of the kidney has revealed cellular heterogeneity, gene expression signatures, and molecular dynamics during the onset and development of kidney diseases. Single-cell analyses of kidney organoids and allograft tissues offer new insights into kidney organogenesis, disease mechanisms, and therapeutic outcomes. Collectively, a better understanding of kidney cell heterogeneity and the molecular dynamics of kidney diseases will improve diagnostic accuracy and facilitate the identification of novel treatment strategies in nephrology. <b><i>Key Message:</i></b> In this review article, we summarize recent single-cell studies on kidney diseases and discuss the impact of single-cell technology on both basic and clinical nephrology research.


2015 ◽  
Vol 309 (4) ◽  
pp. F341-F358 ◽  
Author(s):  
Jeffrey W. Pippin ◽  
Natalya V. Kaverina ◽  
Diana G. Eng ◽  
Ronald D. Krofft ◽  
Sean T. Glenn ◽  
...  

Modified vascular smooth muscle cells of the kidney afferent arterioles have recently been shown to serve as progenitors for glomerular epithelial cells in response to glomerular injury. To determine whether such cells of renin lineage (CoRL) serve as progenitors for other cells in kidney disease characterized by both glomerular and tubulointerstitial injury, permanent genetic cell fate mapping of adult CoRL using Ren1cCreER × Rs-tdTomato-R reporter mice was performed. TdTomato-labeled CoRL were almost completely restricted to the juxtaglomerular compartment in healthy kidneys. Following 2 wk of antibody-mediated focal segmental glomerulosclerosis (FSGS) or 16 wk of ⅚ nephrectomy-induced chronic kidney diseases, tdTomato-mapped CoRL were identified in both interstitial and glomerular compartments. In the interstitium, PDGFβ receptor (R)-expressing cells significantly increased, and a portion of these expressed tdTomato. This was accompanied by a decrease in native pericyte number, but an increase in the number of tdTomato cells that coexpressed the pericyte markers PDGFβ-R and NG2. These cells surrounded vessels and coexpressed the pericyte markers CD73 and CD146, but not the endothelial marker ERG. Within glomeruli of reporter mice with the ⅚ nephrectomy model, a subset of labeled CoRL migrated to the glomerular tuft and coexpressed podocin and synaptopodin. By contrast, labeled CoRL were not detected in glomerular or interstitial compartments following uninephrectomy. These observations indicate that in addition to supplying new adult podocytes to glomeruli, CoRL have the capacity to become new adult pericytes in the setting of interstitial disease. We conclude that CoRL have the potential to function as progenitors for multiple adult cell types in kidney disease.


Sign in / Sign up

Export Citation Format

Share Document