Effect of simulated microgravity and ionizing radiation on expression profiles of miRNA, lncRNA, and mRNA in human lymphoblastoid cells

2020 ◽  
Vol 24 ◽  
pp. 1-8 ◽  
Author(s):  
Hanjiang Fu ◽  
Fei Su ◽  
Jie Zhu ◽  
Xiaofei Zheng ◽  
Changhui Ge
DNA Repair ◽  
2013 ◽  
Vol 12 (7) ◽  
pp. 508-517 ◽  
Author(s):  
Ingrid Nosel ◽  
Aurélie Vaurijoux ◽  
Joan-Francesc Barquinero ◽  
Gaetan Gruel

2011 ◽  
Vol 6 (1) ◽  
Author(s):  
Olivier M Niemoeller ◽  
Maximilian Niyazi ◽  
Stefanie Corradini ◽  
Franz Zehentmayr ◽  
Minglun Li ◽  
...  

2005 ◽  
Vol 288 (6) ◽  
pp. C1211-C1221 ◽  
Author(s):  
Steven J. Pardo ◽  
Mamta J. Patel ◽  
Michelle C. Sykes ◽  
Manu O. Platt ◽  
Nolan L. Boyd ◽  
...  

Exposure to microgravity causes bone loss in humans, and the underlying mechanism is thought to be at least partially due to a decrease in bone formation by osteoblasts. In the present study, we examined the hypothesis that microgravity changes osteoblast gene expression profiles, resulting in bone loss. For this study, we developed an in vitro system that simulates microgravity using the Random Positioning Machine (RPM) to study the effects of microgravity on 2T3 preosteoblast cells grown in gas-permeable culture disks. Exposure of 2T3 cells to simulated microgravity using the RPM for up to 9 days significantly inhibited alkaline phosphatase activity, recapitulating a bone loss response that occurs in real microgravity conditions without altering cell proliferation and shape. Next, we performed DNA microarray analysis to determine the gene expression profile of 2T3 cells exposed to 3 days of simulated microgravity. Among 10,000 genes examined using the microarray, 88 were downregulated and 52 were upregulated significantly more than twofold using simulated microgravity compared with the static 1-g condition. We then verified the microarray data for some of the genes relevant in bone biology using real-time PCR assays and immunoblotting. We confirmed that microgravity downregulated levels of alkaline phosphatase, runt-related transcription factor 2, osteomodulin, and parathyroid hormone receptor 1 mRNA; upregulated cathepsin K mRNA; and did not significantly affect bone morphogenic protein 4 and cystatin C protein levels. The identification of gravisensitive genes provides useful insight that may lead to further hypotheses regarding their roles in not only microgravity-induced bone loss but also the general patient population with similar pathological conditions, such as osteoporosis.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1205
Author(s):  
Christopher Ludtka ◽  
Erika Moore ◽  
Josephine B. Allen

The effects of spaceflight, including prolonged exposure to microgravity, can have significant effects on the immune system and human health. Altered immune cell function can lead to adverse health events, though precisely how and to what extent a microgravity environment impacts these cells remains uncertain. Macrophages, a key immune cell, effect the inflammatory response as well as tissue remodeling and repair. Specifically, macrophage function can be dictated by phenotype that can exist between spectrums of M0 macrophage: the classically activated, pro-inflammatory M1, and the alternatively activated, pro-healing M2 phenotypes. This work assesses the effects of simulated microgravity via clinorotation on M0, M1, and M2 macrophage phenotypes. We focus on phenotypic, inflammatory, and angiogenic gene and protein expression. Our results show that across all three phenotypes, microgravity results in a decrease in TNF-α expression and an increase in IL-12 and VEGF expression. IL-10 was also significantly increased in M1 and M2, but not M0 macrophages. The phenotypic cytokine expression profiles observed may be related to specific gravisensitive signal transduction pathways previously implicated in microgravity regulation of macrophage gene and protein expression. Our results highlight the far-reaching effects that simulated microgravity has on macrophage function and provides insight into macrophage phenotypic function in microgravity.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Shaobo Tan ◽  
Weiwei Pei ◽  
Hao Huang ◽  
Guangming Zhou ◽  
Wentao Hu

Abstract Radiation and microgravity are undoubtedly two major factors in space environment that pose a health threat to astronauts. However, the mechanistic study of their interactive biological effects is lacking. In this study, human lung bronchial epithelial Beas-2B cells were used to study the regulation of radiobiological effects by simulated microgravity (using a three-dimensional clinostat). It was found that simulated microgravity together with radiation induced drop of survival fraction, proliferation inhibition, apoptosis, and DNA double-strand break formation of Beas-2B cells additively. They also additively induced Ras-related C3 botulinum toxin substrate 2 (RAC2) upregulation, leading to increased NADPH oxidase activity and increased intracellular reactive oxygen species (ROS) yield. The findings indicated that simulated microgravity and ionizing radiation presented an additive effect on cell death of human bronchial epithelial cells, which was mediated by RAC2 to some extent. The study provides a new perspective for the better understanding of the compound biological effects of the space environmental factors.


APOPTOSIS ◽  
2019 ◽  
Vol 25 (1-2) ◽  
pp. 73-91 ◽  
Author(s):  
Yi-Kai Pan ◽  
Cheng-Fei Li ◽  
Yuan Gao ◽  
Yong-Chun Wang ◽  
Xi-Qing Sun

AbstractWeightlessness-induced cardiovascular dysfunction can lead to physiological and pathological consequences. It has been shown that spaceflight or simulated microgravity can alter expression profiles of some microRNAs (miRNAs). Here, we attempt to identify the role of miRNAs in human umbilical vein endothelial cells (HUVECs) apoptosis under simulated microgravity. RNA-sequencing and quantitative real-time PCR (qRT-PCR) assays were used to identify differentially expressed miRNAs in HUVECs under simulated microgravity. Then we obtained the target genes of these miRNAs through target analysis software. Moreover, GO and KEGG enrichment analysis were performed. The effects of these miRNAs on HUVECs apoptosis were evaluated by flow cytometry, Western blot and Hoechst staining. Furthermore, we obtained the target gene of miR-27b-5p by luciferase assay, qRT-PCR and Western blot. Finally, we investigated the relationship between this target gene and miR-27b-5p in HUVECs apoptosis under normal gravity or simulated microgravity. We found 29 differentially expressed miRNAs in HUVECs under simulated microgravity. Of them, the expressions of 3 miRNAs were validated by qRT-PCR. We demonstrated that miR-27b-5p affected HUVECs apoptosis by inhibiting zinc fingers and homeoboxes 1 (ZHX1). Our results reported here demonstrate for the first time that simulated microgravity can alter the expression of some miRNAs in HUVECs and miR-27b-5p may protect HUVECs from apoptosis under simulated microgravity by targeting ZHX1.


2005 ◽  
Vol 45 (2-3) ◽  
pp. 188-205 ◽  
Author(s):  
Gregory S. Akerman ◽  
Barry A. Rosenzweig ◽  
Olen E. Domon ◽  
Chen-An Tsai ◽  
Michelle E. Bishop ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3916-3916
Author(s):  
Reinhold Munker ◽  
Tetsuro Setoyama ◽  
Madeleine Duvic ◽  
Robert Z. Orlowski ◽  
George Calin

Abstract Abstract 3916 Introduction: Multiple myeloma is clinically and biologically heterogeneous. Certain translocations and chromosomal losses (t{14;16}, t{14;20}, del 17p) and gene expression profiles define high-risk disease. Recently, several groups found microRNAs (miRs) dysregulated in multiple myeloma. A profile composed of 28 miRs was found to define high-risk disease. Among the dysregulated miRs, miR15a, miR16 were down-regulated, miR19b, miR20a, miR181b were increased according to most publications. MiR-21 was generally upregulated in high-risk disease and inducible by interleukin-6. We hypothesized that commonly administered treatments for multiple myeloma would alter the expression pattern of these miRs. Materials and Methods: For these in-vitro experiments, 4 established cell lines were used: RPMI8226, OPM-2 (t4;14), Kas-6 (IL-6-dependent) and MM1-S (t14;16). The cells were treated with ionizing radiation (3- 6 Gy), lenalidomide (10 μM), doxorubicin (50 ng/ml), bortezomib (2- 50 nM), SAHA (1–3x 10−6 M), pegylated interferon α (3–300 ng/ml) and nutlin-3 (10 μM) between 2 and 48 hours. RNA was extracted and quantitative real-time RT-PCR was performed for miR-15a, miR-16, miR19b, miR-20a, miR21, miR-181b and a control gene (U6). The expression was calculated and compared by the ΔΔ CT method. Results: Ionizing radiation increased miR15a in 1/2 cell lines at early time points, increased miR-19b at early time points in 2/2 cell lines (decreased later) and increased MiR20a in 2/2 cell lines at early time points. Lenalidomide induced miR15a in 2/4 cell lines, miR19b in 3/ 4 cell lines and miR-20a in 3/ 4 cell lines. Doxorubicin increased miR-16 in 2/3 cases and miR-20a in 2/3 cases (in 1 cell line decreased). Bortezomib overall induced few changes in miR-expression. SAHA induced miR-15a in 2/3 cell lines and decreased miR-16 in 1/3. MiR-19a was decreased with SAHA in 2/4 and increased in 1/4 cell lines. MiR-20 decreased in 1/4 and increased in 1/4. MiR-21 decreased in 1 and increased in 1/4 SAHA-treated cell lines. MiR-181b increased in 2/4 cell lines. Pegylated interferon decreased MiR-15a in 3/4 cell lines, decreased miR-16a in 3/4 cell lines, increased miR19b in 2/4 cell lines. MiR-20a was increased in 2/4 and decreased in 1/4 cell lines. MiR-181b was decreased in 2/ 4 cell lines. Nutlin-3 increased miR16 in 1/3 cell lines, increased miR-20a in 2/4 cell lines, increased miR-181b in 2/4, decreased miR-181b in 1/4 cell lines. Most changes observed are in the range of −50 – + 200%. Conclusions: Many miRs are induced at early time points under non-cytotoxic conditions. The variability observed in these experiments may be due to the genetic heterogeneity of the cell lines. Interferon mostly down-modulates the expression of the miRs studied. Previous experiments, for example using endothelial cells also showed an induction of certain miRs after cytotoxic or cytostatic treatments. This can be explained as a stress response or protective mechanism enhancing tumor cell survival. However, the functional relevance of our data was not investigated. The downregulation of miRs following interferon treatment is surprising and would argue for a combination of interferon with cytostatic treatments. If confirmed using CD138 selected samples from patients with multiple myeloma, our data may be used to develop a treatment profile which ultimately might prognosticate treatment response. Our results are also relevant for future miR-based treatments for multiple myeloma. Disclosures: Orlowski: Onyx Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document