scholarly journals Simultaneous exposure to chronic irradiation and simulated microgravity differentially alters immune cell phenotype in mouse thymus and spleen

Author(s):  
Ratan Sadhukhan ◽  
Debajyoti Majumdar ◽  
Sarita Garg ◽  
Reid D. Landes ◽  
Victoria McHargue ◽  
...  
2019 ◽  
Vol 20 (8) ◽  
pp. 1892 ◽  
Author(s):  
Caterina Morabito ◽  
Paola Lanuti ◽  
Giusy A. Caprara ◽  
Marco Marchisio ◽  
Mariano Bizzarri ◽  
...  

The presence of microgravity conditions deeply affects the human body functions at the systemic, organ and cellular levels. This study aimed to investigate the effects induced by simulated-microgravity on non-stimulated Jurkat lymphocytes, an immune cell phenotype considered as a biosensor of the body responses, in order to depict at the cellular level the effects of such a peculiar condition. Jurkat cells were grown at 1 g or on random positioning machine simulating microgravity. On these cells we performed: morphological, cell cycle and proliferation analyses using cytofluorimetric and staining protocols—intracellular Ca2+, reactive oxygen species (ROS), mitochondria membrane potential and O2− measurements using fluorescent probes—aconitase and mitochondria activity, glucose and lactate content using colorimetric assays. After the first exposure days, the cells showed a more homogeneous roundish shape, an increased proliferation rate, metabolic and detoxifying activity resulted in decreased intracellular Ca2+ and ROS. In the late exposure time, the cells adapted to the new environmental condition. Our non-activated proliferating Jurkat cells, even if responsive to altered external forces, adapted to the new environmental condition showing a healthy status. In order to define the cellular mechanism(s) triggered by microgravity, developing standardized experimental approaches and controlled cell culture and simulator conditions is strongly recommended.


RMD Open ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. e001549 ◽  
Author(s):  
Aurélie Najm ◽  
Alessia Alunno ◽  
Xavier Mariette ◽  
Benjamin Terrier ◽  
Gabriele De Marco ◽  
...  

BackgroundThe SARS-CoV-2 pandemic is a global health problem. Beside the specific pathogenic effect of SARS-CoV-2, incompletely understood deleterious and aberrant host immune responses play critical roles in severe disease. Our objective was to summarise the available information on the pathophysiology of COVID-19.MethodsTwo reviewers independently identified eligible studies according to the following PICO framework: P (population): patients with SARS-CoV-2 infection; I (intervention): any intervention/no intervention; C (comparator): any comparator; O (outcome) any clinical or serological outcome including but not limited to immune cell phenotype and function and serum cytokine concentration.ResultsOf the 55 496 records yielded, 84 articles were eligible for inclusion according to question-specific research criteria. Proinflammatory cytokine expression, including interleukin-6 (IL-6), was increased, especially in severe COVID-19, although not as high as other states with severe systemic inflammation. The myeloid and lymphoid compartments were differentially affected by SARS-CoV-2 infection depending on disease phenotype. Failure to maintain high interferon (IFN) levels was characteristic of severe forms of COVID-19 and could be related to loss-of-function mutations in the IFN pathway and/or the presence of anti-IFN antibodies. Antibody response to SARS-CoV-2 infection showed a high variability across individuals and disease spectrum. Multiparametric algorithms showed variable diagnostic performances in predicting survival, hospitalisation, disease progression or severity, and mortality.ConclusionsSARS-CoV-2 infection affects both humoral and cellular immunity depending on both disease severity and individual parameters. This systematic literature review informed the EULAR ‘points to consider’ on COVID-19 pathophysiology and immunomodulatory therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Clovis Boibessot ◽  
France-Hélène Joncas ◽  
Aerin Park ◽  
Zohra Berrehail ◽  
Jean-François Pelletier ◽  
...  

AbstractWithin the prostate tumor microenvironment (TME) there are complex multi-faceted and dynamic communication occurring between cancer cells and immune cells. Macrophages are key cells which infiltrate and surround tumor cells and are recognized to significantly contribute to tumor resistance and metastases. Our understanding of their function in the TME is commonly based on in vitro and in vivo models, with limited research to confirm these model observations in human prostates. Macrophage infiltration was evaluated within the TME of human prostates after 72 h culture of fresh biopsies samples in the presence of control or enzalutamide. In addition to immunohistochemistry, an optimized protocol for multi-parametric evaluation of cellular surface markers was developed using flow cytometry. Flow cytometry parameters were compared to clinicopathological features. Immunohistochemistry staining for 19 patients with paired samples suggested enzalutamide increased the expression of CD163 relative to CD68 staining. Techniques to validate these results using flow cytometry of dissociated biopsies after 72 h of culture are described. In a second cohort of patients with Gleason grade group ≥ 3 prostate cancer, global macrophage expression of CD163 was unchanged with enzalutamide treatment. However, exploratory analyses of our results using multi-parametric flow cytometry for multiple immunosuppressive macrophage markers suggest subgroup changes as well as novel associations between circulating biomarkers like the neutrophil to lymphocyte ratio (NLR) and immune cell phenotype composition in the prostate TME. Further, we observed an association between B7–H3 expressing tumor-associated macrophages and the presence of intraductal carcinoma. The use of flow cytometry to evaluate ex vivo cultured prostate biopsies fills an important gap in our ability to understand the immune cell composition of the prostate TME. Our results highlight novel associations for further investigation.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1205
Author(s):  
Christopher Ludtka ◽  
Erika Moore ◽  
Josephine B. Allen

The effects of spaceflight, including prolonged exposure to microgravity, can have significant effects on the immune system and human health. Altered immune cell function can lead to adverse health events, though precisely how and to what extent a microgravity environment impacts these cells remains uncertain. Macrophages, a key immune cell, effect the inflammatory response as well as tissue remodeling and repair. Specifically, macrophage function can be dictated by phenotype that can exist between spectrums of M0 macrophage: the classically activated, pro-inflammatory M1, and the alternatively activated, pro-healing M2 phenotypes. This work assesses the effects of simulated microgravity via clinorotation on M0, M1, and M2 macrophage phenotypes. We focus on phenotypic, inflammatory, and angiogenic gene and protein expression. Our results show that across all three phenotypes, microgravity results in a decrease in TNF-α expression and an increase in IL-12 and VEGF expression. IL-10 was also significantly increased in M1 and M2, but not M0 macrophages. The phenotypic cytokine expression profiles observed may be related to specific gravisensitive signal transduction pathways previously implicated in microgravity regulation of macrophage gene and protein expression. Our results highlight the far-reaching effects that simulated microgravity has on macrophage function and provides insight into macrophage phenotypic function in microgravity.


2019 ◽  
Author(s):  
George A Robinson ◽  
Kirsty E Waddington ◽  
Marsilio Adriani ◽  
Anna Radziszewska ◽  
Hannah Peckham ◽  
...  

ABSTRACTMale and female immune responses are known to differ resulting in an increased prevalence of autoimmunity in women. Here sex differences in T-cell subset frequency and function during adolescence were examined in healthy donors and patients with the autoimmune disease juvenile (J)SLE; onset of JSLE commonly occurs during puberty suggesting a strong hormonal influence. Healthy adolescent males had increased regulatory T-cell (Treg) frequency, and increased Treg suppressive capacity and IL-4 production compared to healthy adolescent females. The T-helper 2-like profile in male Tregs was associated with increased expression of GATA3 which correlated significantly with elevated Treg plasma membrane glycosphingolipid expression. Differential Treg phenotype was associated with unique serum metabolomic profiles in males compared to female adolescents. Notably, very low density lipoprotein (VLDL) metabolomic signatures correlated positively with activated Tregs in males but with resting Tregs in females. Consistently, only VLDL isolated from male serum was able to induce increased Treg IL-4 production and glycosphingolipid expression following in cultured cells. Remarkably, gender differences in Treg frequency, phenotype and function and serum metabolomic profiles were lost in adolescents with JSLE. This work provides evidence that a combination of pubertal development, immune cell defects and dyslipidemia may contribute to JSLE pathogenesis.


2019 ◽  
Vol 378 (2) ◽  
pp. 239-254 ◽  
Author(s):  
Huda A. M. Al-Shalan ◽  
Dailun Hu ◽  
Philip K. Nicholls ◽  
Wayne K. Greene ◽  
Bin Ma
Keyword(s):  

Metabolites ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 372 ◽  
Author(s):  
Karl J. Harber ◽  
Kyra E. de Goede ◽  
Sanne G. S. Verberk ◽  
Elisa Meinster ◽  
Helga E. de Vries ◽  
...  

Immunometabolism revealed the crucial role of cellular metabolism in controlling immune cell phenotype and functions. Macrophages, key immune cells that support progression of numerous inflammatory diseases, have been well described as undergoing vast metabolic rewiring upon activation. The immunometabolite succinate particularly gained a lot of attention and emerged as a crucial regulator of macrophage responses and inflammation. Succinate was originally described as a metabolite that supports inflammation via distinct routes. Recently, studies have indicated that succinate and its receptor SUCNR1 can suppress immune responses as well. These apparent contradictory effects might be due to specific experimental settings and particularly the use of distinct succinate forms. We therefore compared the phenotypic and functional effects of distinct succinate forms and receptor mouse models that were previously used for studying succinate immunomodulation. Here, we show that succinate can suppress secretion of inflammatory mediators IL-6, tumor necrosis factor (TNF) and nitric oxide (NO), as well as inhibit Il1b mRNA expression of inflammatory macrophages in a SUCNR1-independent manner. We also observed that macrophage SUCNR1 deficiency led to an enhanced inflammatory response without addition of exogenous succinate. While our study does not reveal new mechanistic insights into how succinate elicits different inflammatory responses, it does indicate that the inflammatory effects of succinate and its receptor SUCNR1 in macrophages are clearly context dependent.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S5-S6
Author(s):  
Ryan Frieler ◽  
Thomas Vigil ◽  
Richard Mortensen ◽  
Yatrik Shah

Abstract Background Inflammation is a hallmark of inflammatory bowel disease and alterations in tricarboxylic acid cycle (TCA) metabolism have been identified as major regulators of immune cell phenotype during inflammation and hypoxia. The TCA cycle metabolite, itaconate, is produced by the enzyme aconitate decarboxylase 1 (Acod1) and is highly upregulated during classical macrophage activation and during experimental colitis. Itaconate and cell permeable derivatives have robust anti-inflammatory effects on macrophages, therefore we hypothesized that Acod1-produced itaconate has a protective, anti-inflammatory effect during experimental colitis. Methods and Results Wild type (WT) control and Acod1-/- mice were administered 3% Dextran Sulfate Sodium (DSS) in water for 7 days to induce experimental colitis. After DSS was discontinued, Acod1-/- mice had significantly reduced body weight recovery with increased macroscopic disease severity, and upon dissection had decreased colon length and more severe inflammation. To determine if myeloid cells are the critical Acod1/itaconate-producing cell types, we generated myeloid-specific Acod1 deficient mice, however no differences in weight loss, colon length or inflammatory gene expression were detected compared to WT controls. To test whether supplementation with exogenous itaconate could ameliorate colitis, WT mice were treated with the cell-permeable form of itaconate, dimethyl itaconate (DMI). Administration of DMI significantly improved recovery after 7 days of DSS treatment and significantly reduced inflammatory gene expression in the colon. Conclusion Our data suggest that Acod1-produced itaconate has an important role in the regulation of inflammation during experimental colitis. Although myeloid cells have been thought to be major producers of Acod1 and itaconate, our data indicate that other cell types are involved. These results highlight the importance of this immunometabolic pathway and suggest that preservation or enhancement of this pathway with natural metabolites or metabolite derivatives could have beneficial effects during colitis.


Sign in / Sign up

Export Citation Format

Share Document