Static recrystallized annealing treatment-induced strength-ductility trade-off in cold-rolled Co36Fe36Cr18Ni10 multi-principal alloy

2021 ◽  
pp. 111254
Author(s):  
Hao Wang ◽  
Xiaohong Chen ◽  
Honglei Zhou ◽  
Yu Jiang ◽  
Ping Liu
2011 ◽  
Vol 702-703 ◽  
pp. 627-630
Author(s):  
B. Ravi Kumar

The present study aims to understand the evolution of microstructure leading to nano/ultrafine grain formation during cyclic thermal process. A commercial grade of AISI 304L austenitic SS was cold rolled which resulted in a creation of a dual microstructure having strain induced martensite (43%) and heavily deformed retained austenite. The dual phase microstructure was subjected to cyclic thermal annealing process at 825 °C. The events occurring in; a) retained austenite and b) reverted austenite formed by phase reversion of strain induced martensite, during annealing treatment, were studied by the Electron backscattered diffraction (EBSD). The study revealed recrystallisation process of the two austenite grains, which resulted into ultrafine grain formation during cyclic thermal process.


2013 ◽  
Vol 745-746 ◽  
pp. 363-370 ◽  
Author(s):  
Xiao Xiang Wu ◽  
Yu Lan Gong ◽  
Shi Ying Ren ◽  
Jing Mei Tao ◽  
Yan Long ◽  
...  

The effect of annealing treatment on the mechanical properties and microstructure of cold-rolled Cu-20% Zn alloys was investigated in this work. Mechanical properties changed dramatically with the increase of temperature. According to the microhardness test, it can roughly concluded that 150 is the optimal annealing temperature for deformation, at which a uniform elongation increased from 1.4658% before annealing to about 6.89%, and the elongation to failure increased from 7.426% to 16.81% with the same strength almost retained. The changes of microstructure during the annealing process are mainly distributed to the improvement of mechanical properties.


2018 ◽  
Vol 921 ◽  
pp. 231-235
Author(s):  
Ke Bin Sun ◽  
Yan Feng Li ◽  
Ye Xin Jiang ◽  
Guo Jie Huang ◽  
Xue Shuai Li ◽  
...  

Copper foils with 91% cold rolled deformation annealed at temperature between 140°C and 170 °C.The microstructures were observed by EBSD. The mechanical properties were measured at room temperature by tensile test machine and the fracture morphologies observed by SEM. After annealed at 150 °C, recrystallization begins to occur, while the elongation increases evidently and tensile strength decreases sharply. When the temperature rises to 170 °C, recrystallization is complete and the grain starts to grow. When the foils are annealed at 140 °C, it exhibits a strong cold rolling textures characterized by Brass {011}<211> and Cu {112}<111>. After annealed at 170 °C, there are olny weak Brass {011}<211> texture.


1997 ◽  
Vol 3 (S2) ◽  
pp. 591-592
Author(s):  
D.F. Teter ◽  
R.D. Field ◽  
D.J. Thoma

The palladium-rhodium system has been extensively studied for its hydrogen absorption characteristics. However, the phase diagram of the palladium-rhodium system has not been conclusively determined below 800 K. Shield and Williams have experimentally determined the incoherent miscibility gap in Pd-Rh alloys using electrical resistivity studies, however the coherent miscibility gap and spinodal have not been determined. Recently work by Noh and Flanagan has suggested that hydrogen enhances metal atom mobility and may increase the kinetics of phase separation in Pd-Rh alloys. Field and Thoma found that hydrogen causes a Pd-10%Rh alloy to decompose during an in situhydrogen charging experiment in an environmental cell TEM. According to the calculations by Gonis et al. of the miscibility gap for the palladium-rhodium system, the Pd-10%Rh alloy may be within the chemical spinodal at room temperature.In this work, two palladium-rhodium compositions were investigated. The first was a Pd-10 at.% Rh alloy produced by melt-spinning, and the second was a Pd-30at.%Rh alloy which had been arc-melted and cold rolled followed by an annealing treatment to homogenize the material. TEM specimens were prepared by punching 3 mm disks from the material.


2015 ◽  
Vol 378 ◽  
pp. 253-260 ◽  
Author(s):  
S. Hasani ◽  
M. Shamanian ◽  
A. Shafyei ◽  
P. Behjati ◽  
M. Nezakat ◽  
...  

2012 ◽  
Vol 184-185 ◽  
pp. 959-962 ◽  
Author(s):  
Yang Liu ◽  
Wen Jing Shang ◽  
Hong Fang Liu ◽  
Zhi Gang Huang

Using weight-loss method combined with metallographic to analysis the effect of annealing temperature (600°C, 640°C, 680°C) on the corrosion resistance of cold rolled strip of complex brass HAl72-2.5Al-1.0Ni alloy. Corrosive solutions for testing the corrosion velocity were 3.5% of the neutral sodium chloride solution, artificial acid rain (3.5% NaCl+H2SO4 solution) and artificial sweat solution. The research results show that the corrosion of cold rolled strip occurs easily because grains stretched along the direction of deformation and the existence of residual stress. The maximum corrosion depth of cold-rolled strip is 94.8μm. Annealing treatment can effectively reduce the corrosion depth of alloy. Corrosion resistance of alloy rises with the increase of annealing temperature, because the recrystallization degree of alloy goes on more sufficient. The corrosion depth of samples annealed at 600°C and 680°C drops from 64.45μm to 56.32μm respectively. Aluminum content in the alloy also affects the corrosion resistance of the alloy, because oxygen oxidizes aluminum to density Al2O3 film which prevents the further corrosion of the alloy. The corrosion velocity of samples in the solution of artificial acid rain is fastest and lowest in artificial perspiration solution.


Sign in / Sign up

Export Citation Format

Share Document