Enhanced and cost-effective techniques used for plant growth in vertical agriculture

Author(s):  
Tupili Sangeetha ◽  
P. Ezhumalai
2021 ◽  
Vol 3 ◽  
Author(s):  
Subhrangshu Mandal ◽  
Kunal Kumar Saha ◽  
Narayan Chandra Mandal

Over the past few decades, the massive increase in anthropogenic activity and industrialization processes has increased new pollutants in the environment. The effects of such toxic components (heavy metals, pesticides, etc.) in our ecosystem vary significantly and are of significant public health and economic concern. Because of this, environmental consciousness is increasing amongst consumers and industrialists, and legal constraints on emissions are becoming progressively stricter; for the ultimate aim is to achieve cost-effective emission control. Fortunately, certain taxonomically and phylogenetically diverse microorganisms (e.g., sulfur oxidizing/reducing bacteria) are endowed with the capability to remediate such undesired components from diverse habitats and have diverse plant-growth-promoting abilities (auxin and siderophore production, phosphate solubilization, etc.). However, the quirk of fate for pollutant and plant-growth-promoting microbiome research is that, even with an early start, genetic knowledge on these systems is still considered to be in its infancy due to the unavailability of in-depth functional genomics and population dynamics data from various ecosystems. This knowledge gap can be breached if we have adequate information concerning their genetic make-up, so that we can use them in a targeted manner or with considerable operational flexibility in the agricultural sector. Amended understanding regarding the genetic basis of potential microbes involved in such processes has led to the establishment of novel or advanced bioremediation technologies (such as the detoxification efficiency of heavy metals), which will further our understanding of the genomic/genetic landscape in these potential organisms. Our review aimed to unravel the hidden genomic basis and eco-physiological properties of such potent bacteria and their interaction with plants from various ecosystems.


Author(s):  
Natalie W. Breakfield ◽  
Dayna Collett ◽  
Michael E. Frodyma

Plant growth-promoting microbes can affect the plant microbiome, improving different properties of the plant such as yield and health. Many companies are commercializing these microbes as products called biologicals. Defining the product concept is one of the first and most important steps in making a biological product. Companies can use phenotyping and genotyping approaches to identify the microbe to make into a live bacterial product. Screening usually begins in the laboratory and often moves from high-throughput methods to more time and resource-intensive methods culminating in large scale field testing. Once the microbe is chosen, the fermentation process grows the bacteria to the necessary amounts, while the formulation process ensures a stable product in the desired form such as a liquid or powder. The products must show yield increases in the field over several seasons and conditions, but also must be easy to use and cost-effective to be adopted by farmers and other customers. Tying all these data together from the selection process to test results gives a customer a ‘reason to believe’ for the marketing and launch of a successful product.


2018 ◽  
Vol 19 (10) ◽  
pp. 3073 ◽  
Author(s):  
Md. Rahman ◽  
Sang-Hoon Lee ◽  
Hee Ji ◽  
Ahmad Kabir ◽  
Chris Jones ◽  
...  

Aluminum (Al) toxicity is one of the major limitations that inhibit plant growth and development in acidic soils. In acidic soils (pH < 5.0), phototoxic-aluminum (Al3+) rapidly inhibits root growth, and subsequently affects water and nutrient uptake in plants. This review updates the existing knowledge concerning the role of mineral nutrition for alleviating Al toxicity in plants to acid soils. Here, we explored phosphorus (P) is more beneficial in plants under P-deficient, and Al toxic conditions. Exogenous P addition increased root respiration, plant growth, chlorophyll content, and dry matter yield. Calcium (Ca) amendment (liming) is effective for correcting soil acidity, and for alleviating Al toxicity. Magnesium (Mg) is able to prevent Al migration through the cytosolic plasma membrane in root tips. Sulfur (S) is recognized as a versatile element that alleviates several metals toxicity including Al. Moreover, silicon (Si), and other components such as industrial byproducts, hormones, organic acids, polyamines, biofertilizers, and biochars played promising roles for mitigating Al toxicity in plants. Furthermore, this review provides a comprehensive understanding of several new methods and low-cost effective strategies relevant to the exogenous application of mineral nutrition on Al toxicity mitigation. This information would be effective for further improvement of crop plants in acid soils.


2019 ◽  
Vol 5 ◽  
pp. 1
Author(s):  
Manish Batham ◽  
Jot Sharma ◽  
◽  

The contamination of soil by anthropogenic activities is of great concern in recent times. There is an urgent demand of reliable and eco-friendly approaches for remediation of this concern. The current techniques for heavy metal remediation from contaminated soil are costly, time consuming, and harmful for the environment. Toxicity of heavy metals can reduce plant growth, and a high level of presence of these heavy metals is a risk factor to human and plant health. Heavy metals neither biodegradable materials nor are created. They occur naturally in the earth crust, and they reach the environment by human activities. Organic compounds can be degraded, but metals cannot degrade, and therefore effective cleanup requires its immobilization to reduce or remove toxicity. Recently, research focuses on cost-effective technologies to clean polluted areas. Vermiremediation and phytoremediation are two such useful techniques. In these eco-friendly techniques of remediation, the target plants accumulate, volatilize the contaminants, or convert them into some nontoxic forms, thus remediating the soil.


2020 ◽  
Vol 79 (47-48) ◽  
pp. 34955-34971 ◽  
Author(s):  
Abhipray Paturkar ◽  
Gourab Sen Gupta ◽  
Donald Bailey

Biology ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 177 ◽  
Author(s):  
Ali Raza ◽  
Madiha Habib ◽  
Shiva Najafi Kakavand ◽  
Zainab Zahid ◽  
Noreen Zahra ◽  
...  

Cadmium (Cd) is one of the most toxic metals in the environment, and has noxious effects on plant growth and production. Cd-accumulating plants showed reduced growth and productivity. Therefore, remediation of this non-essential and toxic pollutant is a prerequisite. Plant-based phytoremediation methodology is considered as one a secure, environmentally friendly, and cost-effective approach for toxic metal remediation. Phytoremediating plants transport and accumulate Cd inside their roots, shoots, leaves, and vacuoles. Phytoremediation of Cd-contaminated sites through hyperaccumulator plants proves a ground-breaking and profitable choice to combat the contaminants. Moreover, the efficiency of Cd phytoremediation and Cd bioavailability can be improved by using plant growth-promoting bacteria (PGPB). Emerging modern molecular technologies have augmented our insight into the metabolic processes involved in Cd tolerance in regular cultivated crops and hyperaccumulator plants. Plants’ development via genetic engineering tools, like enhanced metal uptake, metal transport, Cd accumulation, and the overall Cd tolerance, unlocks new directions for phytoremediation. In this review, we outline the physiological, biochemical, and molecular mechanisms involved in Cd phytoremediation. Further, a focus on the potential of omics and genetic engineering strategies has been documented for the efficient remediation of a Cd-contaminated environment.


2020 ◽  
Vol 66 (No. 5) ◽  
pp. 216-221
Author(s):  
Ambreen Ahmed ◽  
Hadia-E- Fatima

Use of microorganisms as heavy metal remediators is an effective approach for chromium reduction in plants. Chromium carcinogenicity (Cr<sup>6+</sup>) beyond the permissible levels elicits environmental and health problems. To reduce chromium toxicity along with the plant growth improvement, a cost-effective and eco-friendly remediation approach is necessary. In the current study, chromium-resistant bacterial species were evaluated for growth improvement of sunflower. Three auxin-producing bacteria able to tolerate hexavalent chromium, i.e., Sporosarcina saromensis (EI) and two species of Bacillus cereus (AR and 3a) were selected for the proposed study. Growth studies along with auxin synthesis potential of bacterial isolates with and without chromium were conducted. Results revealed a 188% enhancement in plant height under laboratory-grown plants with B. cereus (AR) under 500 mg/L chromium stress (Cr<sup>6+</sup>). B. cereus (3a) also showed an 81% increase in leaf number with 400 mg/L chromium stress in laboratory-grown plants. Similarly, 73% increment in the amount of auxin was reported in the case of inoculation with S. saromensis isolate (EI) over respective control treatment. These improvements provide an excellent means of reducing chromium (Cr<sup>6+</sup>) in the contaminated soils naturally by stimulating plant growth along with bioremediation potential.  


2021 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
Tak Tha ◽  
Ply Preap ◽  
Seyha Sorl ◽  
Pao Srean ◽  
Visalsok Touch

The use of bioproducts as biostimulants to stimulate plant growth and to increase yields as an alternative to chemical fertilizers are currently being promoted for cost-effective, sustainable and environmentally friendly agricultural practices of crop production systems. The objective of the study was to determine plant growth and productivity of rice responded to Bio Green application. A short growing period (90 – 95 days) OM-5451 rice variety was used in this study. The rice plants were cultivated in the randomized-completed block with two treatments and six replications in the plot of 2 m * 2 m.  Di-ammonium phosphate (DAP) fertilizer was applied once at a rate of 100 kg/ha. For treatment, Bio-green with a solution of 1% (v/v) was weekly applied as foliage spray; and without Bio-Green as control. The results showed the grain yield was 3.7 t/ha in the treatment and 2.83 t/ha in the control, indicating that 36.4% of the grain yield was increased. The Bio-Green could be significantly used as plant biostimulants to promote plant growth and grain yield in rice in Cambodia.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1759
Author(s):  
Miguel Ayuso-Calles ◽  
José David Flores-Félix ◽  
Raúl Rivas

Salinity is one of the main causes of abiotic stress in plants, resulting in negative effects on crop growth and yield, especially in arid and semi-arid regions. The effects of salinity on plant growth mainly generate osmotic stress, ion toxicity, nutrient deficiency, and oxidative stress. Traditional approaches for the development of salt-tolerant crops are expensive and time-consuming, as well as not always being easy to implement. Thus, the use of plant growth-promoting bacteria (PGPB) has been reported as a sustainable and cost-effective alternative to enhance plant tolerance to salt stress. In this sense, this review aims to understand the mechanisms by which PGPB help plants to alleviate saline stress, including: (i) changes in the plant hormonal balance; (ii) release of extracellular compounds acting as chemical signals for the plant or enhancing soil conditions for plant development; (iii) regulation of the internal ionic content of the plant; or iv) aiding in the synthesis of osmoprotectant compounds (which reduce osmotic stress). The potential provided by PGPB is therefore an invaluable resource for improving plant tolerance to salinity, thereby facilitating an increase in global food production and unravelling prospects for sustainable agricultural productivity.


2005 ◽  
Vol 15 (2) ◽  
pp. 370-373 ◽  
Author(s):  
Brian A. Krug ◽  
Brian E. Whipker ◽  
Ingram McCall ◽  
John M. Dole

Preplant bulb soaks of ancymidol, flurprimidol, paclobutrazol, and uniconazole; foliar sprays of flurprimidol; and substrate drenches of flurprimidol, paclobutrazol, and uniconazole were compared for height control of `Prominence' tulips (Tulipa sp.). Height control was evaluated at anthesis in the greenhouse and 10 days later under postharvest conditions. Substrate drenches of ancymidol, flurprimidol, and paclobutrazol resulted in adequate control using concentrations of 0.5, 0.5, and 1 mg/pot a.i. (28,350 mg = 1 oz), respectively. At these concentrations, ancymidol drenches cost $0.06/pot and paclobutrazol drenches $0.03/pot. Since flurprimidol is not yet available and no price is available, growers will need to assess the cost compared to ancymidol and paclobutrazol. Flurprimidol foliar sprays at <80 mg·L–1 (ppm) were ineffective in controlling height during greenhouse forcing, but during postharvest evaluation 80 mg·L–1 resulted in 14% shorter plants than the untreated control. Preplant bulb soaks of flurprimidol, paclobutrazol, and uniconazole at concentrations of 25, 50, and 10 mg·L–1, respectively, effectively controlled plant height. Preplant plant growth regulator soaks are a cost-effective method of controlling plant height of tulips because of the limited amount of chemical required to treat a large quantity of bulbs.


Sign in / Sign up

Export Citation Format

Share Document