scholarly journals Bio-Green Foliar Spray Enhances Rice Growth and Productivity in Cambodia

2021 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
Tak Tha ◽  
Ply Preap ◽  
Seyha Sorl ◽  
Pao Srean ◽  
Visalsok Touch

The use of bioproducts as biostimulants to stimulate plant growth and to increase yields as an alternative to chemical fertilizers are currently being promoted for cost-effective, sustainable and environmentally friendly agricultural practices of crop production systems. The objective of the study was to determine plant growth and productivity of rice responded to Bio Green application. A short growing period (90 – 95 days) OM-5451 rice variety was used in this study. The rice plants were cultivated in the randomized-completed block with two treatments and six replications in the plot of 2 m * 2 m.  Di-ammonium phosphate (DAP) fertilizer was applied once at a rate of 100 kg/ha. For treatment, Bio-green with a solution of 1% (v/v) was weekly applied as foliage spray; and without Bio-Green as control. The results showed the grain yield was 3.7 t/ha in the treatment and 2.83 t/ha in the control, indicating that 36.4% of the grain yield was increased. The Bio-Green could be significantly used as plant biostimulants to promote plant growth and grain yield in rice in Cambodia.

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1122 ◽  
Author(s):  
Moses Madende ◽  
Maria Hayes

Crop production systems have adopted cost-effective, sustainable and environmentally friendly agricultural practices to improve crop yields and the quality of food derived from plants. Approaches such as genetic selection and the creation of varieties displaying favorable traits such as disease and drought resistance have been used in the past and continue to be used. However, the use of biostimulants to promote plant growth has increasingly gained attention, and the market size for biostimulants is estimated to reach USD 4.14 billion by 2025. Plant biostimulants are products obtained from different inorganic or organic substances and microorganisms that can improve plant growth and productivity and abate the negative effects of abiotic stresses. They include materials such as protein hydrolysates, amino acids, humic substances, seaweed extracts and food or industrial waste-derived compounds. Fish processing waste products have potential applications as plant biostimulants. This review gives an overview of plant biostimulants with a focus on fish protein hydrolysates and legislation governing the use of plant biostimulants in agriculture.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Aloysius Beah ◽  
Alpha Y. Kamara ◽  
Jibrin M. Jibrin ◽  
Folorunso M. Akinseye ◽  
Abdullahi I. Tofa ◽  
...  

This paper assessed the application of the Agricultural Production Systems sIMulator (APSIM)–maize module as a decision support tool for optimizing nitrogen application to determine yield and net return of maize production under current agricultural practices in the Nigeria savannas. The model was calibrated for two maize varieties using data from field experiments conducted under optimum conditions in three locations during the 2017 and 2018 cropping seasons. The model was evaluated using an independent dataset from an experiment conducted under different nitrogen (N) levels in two locations within Southern and Northern Guinea savannas. The results show that model accurately predicted days to 50% anthesis and physiological maturity, leaf area index (LAI), grain yield and total dry matter (TDM) of both varieties with low RMSE and RMSEn (%) values within the range of acceptable statistics indices. Based on 31-year seasonal simulation, optimum mean grain yield of 3941 kg ha−1 for Abuja, and 4549 for Kano was simulated at N rate of 120 kg ha–1 for the early maturing variety 2009EVDT. Meanwhile in Zaria, optimum mean yield of 4173 kg ha–1 was simulated at N rate of 90 kg ha−1. For the intermediate maturing variety, IWDC2SYNF2 mean optimum yields of 5152, 5462, and 4849 kg ha−1, were simulated at N application of 120 kg ha−1 for all the locations. The probability of exceeding attainable mean grain yield of 3000 and 4000 kg ha−1 for 2009EVDT and IWDC2SYNF2, respectively would be expected in 95% of the years with application of 90 kg N ha−1 across the three sites. Following the profitability scenarios analysis, the realistic net incomes of US$ 536 ha–1 for Abuja, and US$ 657 ha−1 for Zaria were estimated at N rate of 90 kg ha−1 and at Kano site, realistic net income of US$ 720 ha–1was estimated at N rate of 120 kg ha−1 for 2009EVDT.For IWDC2SYNF2, realistic net incomes of US$ 870, 974, and 818 ha−1 were estimated at N application of 120 kg ha−1 for Abuja, Zaria, and Kano respectively. The result of this study suggests that 90 kg N ha−1 can be recommended for 2009EVDT and 120 kg N ha–1 for IWDC2SYNF2 in Abuja and Zaria while in Kano, 120 kg N ha−1 should be applied to both varieties to attain optimum yield and profit.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 626
Author(s):  
Tinashe Zenda ◽  
Songtao Liu ◽  
Anyi Dong ◽  
Huijun Duan

Sulphur plays crucial roles in plant growth and development, with its functions ranging from being a structural constituent of macro-biomolecules to modulating several physiological processes and tolerance to abiotic stresses. In spite of these numerous sulphur roles being well acknowledged, agriculture has paid scant regard for sulphur nutrition, until only recently. Serious problems related to soil sulphur deficiencies have emerged and the intensification of food, fiber, and animal production is escalating to feed the ever-increasing human population. In the wake of huge demand for high quality cereal and vegetable diets, sulphur can play a key role in augmenting the production, productivity, and quality of crops. Additionally, in light of the emerging problems of soil fertility exhaustion and climate change-exacerbated environmental stresses, sulphur assumes special importance in crop production, particularly under intensively cropped areas. Here, citing several relevant examples, we highlight, in addition to its plant biological and metabolism functions, how sulphur can significantly enhance crop productivity and quality, as well as acclimation to abiotic stresses. By this appraisal, we also aim to stimulate readers interests in crop sulphur research by providing priorities for future pursuance, including bettering our understanding of the molecular processes and dynamics of sulphur availability and utilization in plants, dissecting the role of soil rhizospherical microbes in plant sulphur transformations, enhancing plant phenotyping and diagnosis for nutrient deficiencies, and matching site-specific crop sulphur demands with fertilizer amendments in order to reduce nutrient use inefficiencies in both crop and livestock production systems. This will facilitate the proper utilization of sulphur in crop production and eventually enhance sustainable and environmentally friend food production.


2020 ◽  
Vol 77 ◽  
pp. 1-26
Author(s):  
Anna Mae M. de los Reyes ◽  
Eureka Teresa M. Ocampo ◽  
Ma. Carmina C. Manuel ◽  
Bernadette C. Mendoza

Each plant species is regarded to substantially influence and thus, select for specific rhizosphere microbial populations. This is considered in the exploitation of soil microbial diversity associated with important crops, which has been of interest in modern agricultural practices for sustainable productivity. This study used PCR-DGGE (polymerase chain reaction - denaturing gradient gel electrophoresis) in order to obtain an initial assessment of the bacterial and fungal communities associated in bulk soil and rhizospheres of different mungbean genotypes under natural field conditions. Integrated use of multivariate analysis and diversity index showed plant growth stage as the primary driver of community shifts in both microbial groups while rhizosphere effect was found to be less discrete in fungal communities. On the other hand, genotype effect was not discerned but not inferred to be absent due to possible lack of manifestations of differences among genotypes based on tolerance to drought under non-stressed environment, and due to detection limits of DGGE. Sequence analysis of prominent members further revealed that Bacillus and Arthrobacter species were dominant in bacterial communities whereas members of Ascomycota and Basidiomycota were common in fungal communities of mungbean. Overall, fungal communities had higher estimated diversity and composition heterogeneity, and were more dynamic under plant growth influence, rhizosphere effect and natural environmental conditions during mungbean growth in upland field. These primary evaluations are prerequisite to understanding the interactions between plant and rhizosphere microorganisms with the intention of employing their potential use for sustainable crop production.


2002 ◽  
Vol 92 (12) ◽  
pp. 1356-1362 ◽  
Author(s):  
F. N. Martin ◽  
C. T. Bull

Soil fumigation with methyl bromide plus chloropicrin is used as a preplant treatment to control a broad range of pathogens in high-value annual crop production systems. In California, fumigation is used on approximately 10,125 ha of strawberry production to control pathogens ranging from Verticillium dahliae to root pruning pathogens such as Pythium, Rhizoctonia, or Cylindrocarpon spp. In addition to pathogen control, fumigation also causes an enhanced growth response of the plant and reduces weed pressure. The development of successful, long-term cost effective biocontrol strategies most likely will require the development of an integrated systems approach that incorporates diverse aspects of the crop production system. Although application of single microbial inoculants may provide some level of control for specific production problems, it will be a challenge to provide the broad spectrum of activity needed in production fields.


2018 ◽  
Vol 5 (2) ◽  
pp. 157-164
Author(s):  
Tahmina Aktar ◽  
Md Rashedur Rahman ◽  
Md Anwarul Abedin ◽  
AHM Jahangir Alam

Rice is the most extensively cultivated cereal crops in Bangladesh and nitrogenous fertilizer, especially urea is the most pressing fertilizer to supply nutrient in the paddy field. With this view, an experiment was conducted to evaluate the effect of deep placement and foliar application of urea fertilizer on BRRI dhan29 rice cultivar in boro season at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh during December 2015 to May 2016. The experiment was laid out in a randomized complete block design considering twelve treatments with three replications. The treatments were- T0 ( No N application), T1 [140 kg N/ha (as prilled urea)], T2 (1.8 g 1-USG + 5 foliar spray @ 1% N solution), T3 (1.8 g 1-USG + 5foliar spray @ 1.5% N solution), T4 (1.8 g 1-USG + 5 foliar spray @ 2% N solution), T5 (1.8 g 2-USG), T6 (2.7 g 1-USG), T7 (2.7 g 1-USG + 3 foliar spray @ 1% N solution), T8 (2.7 g 1-USG + 3 foliar spray @ 1.5% N solution), T9 (2.7 g 1-USG + 3 foliar spray @ 2% N solution), T10 (1.8 g 2-USG + 3 t/ha cowdung), T11 (2.7 g 1-USG + 3 t/ha cowdung). Results showed that the grain and straw yield of the rice variety responded significantly to the application of prilled urea (PU), deep placement of USG and foliar application of N. The highest grain yield (4.8 t/ha) was recorded in T8 which was identical to the yield (4.7 t/ha) obtained in T3. The highest straw yield (6.0 t/ha) was found in T5. The lowest grain yield (3.7 t/ha) and straw yield (4.5 t/ha) were found in T0. Considering the economic efficiency, the treatment T8 showed the maximum gross margin and marginal gross margin with lowest cost per unit of product. Therefore, to get highest grain yield (4.8 t/ha), 82 kg N/ha as USG and 3 foliar spray of N @1.5% concentration i.e. total 219 Kg urea/ha can be applied to the rice field of BRRI dhan29. This will save an amount of 81 Kg urea per rice growing season per hectare.Res. Agric., Livest. Fish.5(2): 157-164, August 2018


Weed Science ◽  
2016 ◽  
Vol 64 (SP1) ◽  
pp. 570-584 ◽  
Author(s):  
Micheal D. K. Owen

Herbicides have been the principal means of weed control in developed countries for approximately 50 yr because they are the most cost-effective method. Such general use of herbicides has resulted in weed resistance to herbicides, which continues to be a growing problem. Within the past decade, the evolution of resistance to the once-dominant herbicide glyphosate has resulted in major concerns about the future ability to control weeds in many crop systems. Moreover, many weed species have evolved resistance to multiple mechanisms of herbicide action. Given the dearth of new herbicides with novel mechanisms of action, it appears inevitable that weed management programs will need to be supplemented by the use of tactics other than herbicides. However, the inclusion of more diversity for weed management also introduces complexity, cost, and time constraints to current crop production systems. This paper describes broadly the considerations, opportunities, and constraints of diverse weed management tactics to address the burgeoning problems with herbicide resistance.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1022
Author(s):  
Ireri Alejandra Carbajal-Valenzuela ◽  
Gabriela Medina-Ramos ◽  
Laura Helena Caicedo-Lopez ◽  
Alejandra Jiménez-Hernández ◽  
Adrian Esteban Ortega-Torres ◽  
...  

Agricultural systems face several challenges in terms of meeting everyday-growing quantities and qualities of food requirements. However, the ecological and social trade-offs for increasing agricultural production are high, therefore, more sustainable agricultural practices are desired. Researchers are currently working on diverse sustainable techniques based mostly on natural mechanisms that plants have developed along with their evolution. Here, we discuss the potential agricultural application of extracellular DNA (eDNA), its multiple functioning mechanisms in plant metabolism, the importance of hormetic curves establishment, and as a challenge: the technical limitations of the industrial scale for this technology. We highlight the more viable natural mechanisms in which eDNA affects plant metabolism, acting as a damage/microbe-associated molecular pattern (DAMP, MAMP) or as a general plant biostimulant. Finally, we suggest a whole sustainable system, where DNA is extracted from organic sources by a simple methodology to fulfill the molecular characteristics needed to be applied in crop production systems, allowing the reduction in, or perhaps the total removal of, chemical pesticides, fertilizers, and insecticides application.


Author(s):  
Fadeyibi, A., ◽  
Akpenpuun, T. D. ◽  
Issah, A. M.

Low yield, insect, pest and weeds competing with crops are challenges in crop production systems in Nigeria. This research was carried out to design and developed a push-type wheel operated liquid fertilizer/ pesticide sprayer. The materials used for fabrication were selected based on the design assumptions, calculations and sourced locally. The sprayer was mechanically operated through the rotating shaft of the cartwheels using a slider-cranks mechanism. An accumulator was provided to create the required pressure of continuous spraying action. The sprayer possesses two tanks of 16 L each, a wheel, a coup-able stand, eight nozzles and an adjustable height depending on the crop height. The sprayer can cover 4.8 hectares per day, effective field capacity of 1.13 ha/h, theoretical field capacity of 1.24 ha/h. and field efficiency of 91%. The developed sprayer consumes less time, cost effective, high efficiency and the users will just have to pull the cart and the whole mechanism will be operated with ease.


2020 ◽  
Vol 2 (1) ◽  
pp. p263
Author(s):  
Shahnaz Parveen ◽  
Mohammad Issak ◽  
Md. Sohanur Rahman ◽  
Fakhar Uddin Talukder ◽  
Shanta Islam

Objective of this study was to examine and evaluate the role of different rates of salicylic acid (SA) as foliar spray on growth and yield performance of BRRI dhan29. The experiment was conducted at Sher-e-Bangla Agricultural University, Bangladesh from November, 2016 to May, 2017 following a randomized complete block design with five rates of SA in six replications. The results showed that the lower rate of SA (upto 0.75 mM) has a positive effect on rice biomass production including effective tiller per hill, filled grain per panicle, grain yield and straw yield. The highest dry matter production at both maximum tillering and panicle initiation stages was found at SA spray rate of 0.5 mM. The highest number of effective tillers per hill (14.7) as well as the highest filled grain (120.4) and grain yield (8.1 t/ha) were found at SA rate of 0.75 mM. However, the maximum biomass production was obtained at SA rate of 0.25 mM. The minimum grain yield (7.0 t/ha) was observed in the control treatment.


Sign in / Sign up

Export Citation Format

Share Document