scholarly journals Medical applications of membranes: Drug delivery, artificial organs and tissue engineering

2008 ◽  
Vol 308 (1-2) ◽  
pp. 1-34 ◽  
Author(s):  
Dimitrios F. Stamatialis ◽  
Bernke J. Papenburg ◽  
Miriam Gironés ◽  
Saiful Saiful ◽  
Srivatsa N.M. Bettahalli ◽  
...  
2020 ◽  
Vol 7 (10) ◽  
pp. 4032-4040
Author(s):  
Esam Bashir Yahya ◽  
Marwa Mohammed Alzalouk ◽  
Khalifa A. Alfallous ◽  
Abdullah F. Abogmaza

Aerogels have been steadily developed since its first invention to become one of the most promising materials for various medical and non-medical applications. It has been prepared from organic and inorganic materials, in pure forms or composites. Cellulose-based aerogels are considered one of the promising materials in biomedical applications due to their availability, degradability, biocompatibility and non-cytotoxicity compared to conventional silica or metal-based aerogels. The unique properties of such materials permit their utilization in drug delivery, biosensing, tissue engineering scaffolds, and wound dressing. This review presents a summary of aerogel development as well as the properties and applications of aerogels. Herein, we further discuss the recent works pertaining to utilization of cellulose-based aerogels for antibacterial delivery.


Author(s):  
Adam B. Nover ◽  
Krista M. Durney ◽  
Shashank R. Sirsi ◽  
Gerard A. Ateshian ◽  
Mark A. Borden ◽  
...  

Previously, microbubbles have been studied for a number of different medical applications including ultrasound imaging contrast and drug delivery [1]. Microbubbles are comprised of a gas enclosed in a lipid shell. Recent research has shown that the inclusion of microbubbles in tissue engineered cartilage constructs has been shown to enhance mechanical and biochemical growth [2,3]. This modification of the tissue engineering scaffold by incorporation of gas-filled microbubbles has been shown to homogenize depth-dependent mechanical properties (Fig. 1) [3], which, in standard constructs, resembles a “U-shaped” strain profile with the stiffest regions on the edges surrounding a soft center [4]. In addition, these microbubble containing constructs are described by a higher partition coefficient than standard constructs, indicating increased solute transport [3]. These results led us to propose the hypothesis that the incorporation of microbubbles: a) increases nutrient transport upon microbubble dissolution, b) creates fluid-filled pores upon gas efflux and subsequent influx of culture media [3]. In this study, the aforementioned hypothesis is interrogated through analysis of local solute diffusivity.


2008 ◽  
Vol 2 (1) ◽  
pp. 1-9 ◽  
Author(s):  
María Vallet-Regí ◽  
Francisco Balas

The two main applications of silica-based materials in medicine and biotechnology,i.e.for bone-repairing devices and for drug delivery systems, are presented and discussed. The influence of the structure and chemical composition in the final characteristics and properties of every silica-based material is also shown as a function of the both applications presented. The adequate combination of the synthesis techniques, template systems and additives leads to the development of materials that merge the bioactive behavior with the drug carrier ability. These systems could be excellent candidates as materials for the development of devices for tissue engineering.


2020 ◽  
Vol 12 (24) ◽  
pp. 10628
Author(s):  
Ankur Bajpai ◽  
Anna Baigent ◽  
Sakshika Raghav ◽  
Conchúr Ó. Brádaigh ◽  
Vasileios Koutsos ◽  
...  

4D printing can be defined as the fabrication of structures using smart materials that allow the final object to change its shape, properties, or function in response to an external stimulus such as light, heat, or moisture. The available technologies, materials, and applications have evolved significantly since their first development in 2013, with prospective applications within the aerospace, manufacturing, and soft robotic industries. This review focuses on the printing technologies and smart materials currently available for fabricating these structures. The applications of 4D printing within biomedicine are explored with a focus on tissue engineering, drug delivery, and artificial organs. Finally, some ideas for potential uses are proposed. 4D printing is making its mark with seemingly unlimited potential applications, however, its use in mainstream medical treatments relies on further developments and extensive research investments.


2019 ◽  
Vol 952 ◽  
pp. 223-232 ◽  
Author(s):  
Ivan Molnár ◽  
Ladislav Morovič ◽  
Daynier Rolando Delgado Sobrino ◽  
Šimon Lecký ◽  
Dávid Michal

At present, biomaterials are used in several sectors of medicine such as implant manufacturing, tissue engineering, orthopedic and prosthetic aids, drug delivery systems and many others. The use of biomaterials is increasingly related to the additive manufacturing (AM) of various medical devices and aids. Biomaterials and their use in medicine are important not only in terms of their biocompatibility and direct effect on the human organism, but also in terms of their biodegradability, processability and non-toxicity to the environment either during their production or during their processing after use. Bioplastics of the type Polylactic acid (PLA) appears to be a suitable biomaterials for use in a variety of medical applications in conjunction with an AM process. For this reason, this article discusses 1) description and use of biomaterials in medical applications 2) AM and biomaterials 3) key properties and uses of PLA bioplastics in medicine and 4) the specific AM of an orthopedic corset made of PLA and its benefits.


2013 ◽  
Vol 135 (02) ◽  
pp. 30-35
Author(s):  
Rohit Karnik ◽  
Robert S. Langer

This study explores the application of nanotechnology in the treatment of diseases and creating artificial organs. Nanotechnology enables new types of therapies that do not use drugs. This would enable physicians to treat infections and tumors that resist medication and are difficult to remove surgically. Nanoparticles could also be used as diagnostics. Nanomaterials promise a combination of approaches that may overcome some of these limitations on drug delivery. Researchers believe that nanotechnology can also help us alter natural designs. If tissue engineering represents the promise of the future, then nanomedicine is the emerging reality of the present. Nanotherapeutics to treat pain and infectious diseases are under development as well. Nanotechnology is well suited for delivering medications. Experts have tested that rationally designed nanocarriers can take advantage of size and shape. Nanomedicine is rapidly moving into the mainstream and is poised to increasingly influence the treatment of diseases such as cancer.


Author(s):  
Vikas V. Gaikwad ◽  
Abasaheb B. Patil ◽  
Madhuri V. Gaikwad

Scaffolds are used for drug delivery in tissue engineering as this system is a highly porous structure to allow tissue growth.  Although several tissues in the body can regenerate, other tissue such as heart muscles and nerves lack regeneration in adults. However, these can be regenerated by supplying the cells generated using tissue engineering from outside. For instance, in many heart diseases, there is need for heart valve transplantation and unfortunately, within 10 years of initial valve replacement, 50–60% of patients will experience prosthesis associated problems requiring reoperation. This could be avoided by transplantation of heart muscle cells that can regenerate. Delivery of these cells to the respective tissues is not an easy task and this could be done with the help of scaffolds. In situ gel forming scaffolds can also be used for the bone and cartilage regeneration. They can be injected anywhere and can take the shape of a tissue defect, avoiding the need for patient specific scaffold prefabrication and they also have other advantages. Scaffolds are prepared by biodegradable material that result in minimal immune and inflammatory response. Some of the very important issues regarding scaffolds as drug delivery systems is reviewed in this article.


2018 ◽  
Vol 24 (8) ◽  
pp. 843-854 ◽  
Author(s):  
Weiguo Xu ◽  
Shujun Dong ◽  
Yuping Han ◽  
Shuqiang Li ◽  
Yang Liu

Hydrogels, as a class of materials for tissue engineering and drug delivery, have high water content and solid-like mechanical properties. Currently, hydrogels with an antibacterial function are a research hotspot in biomedical field. Many advanced antibacterial hydrogels have been developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs and structural diversity. In this article, an overview is provided on the preparation and applications of various antibacterial hydrogels. Furthermore, the prospects in biomedical researches and clinical applications are predicted.


Sign in / Sign up

Export Citation Format

Share Document