scholarly journals 4D Printing: Materials, Technologies, and Future Applications in the Biomedical Field

2020 ◽  
Vol 12 (24) ◽  
pp. 10628
Author(s):  
Ankur Bajpai ◽  
Anna Baigent ◽  
Sakshika Raghav ◽  
Conchúr Ó. Brádaigh ◽  
Vasileios Koutsos ◽  
...  

4D printing can be defined as the fabrication of structures using smart materials that allow the final object to change its shape, properties, or function in response to an external stimulus such as light, heat, or moisture. The available technologies, materials, and applications have evolved significantly since their first development in 2013, with prospective applications within the aerospace, manufacturing, and soft robotic industries. This review focuses on the printing technologies and smart materials currently available for fabricating these structures. The applications of 4D printing within biomedicine are explored with a focus on tissue engineering, drug delivery, and artificial organs. Finally, some ideas for potential uses are proposed. 4D printing is making its mark with seemingly unlimited potential applications, however, its use in mainstream medical treatments relies on further developments and extensive research investments.

2018 ◽  
Vol 24 (8) ◽  
pp. 843-854 ◽  
Author(s):  
Weiguo Xu ◽  
Shujun Dong ◽  
Yuping Han ◽  
Shuqiang Li ◽  
Yang Liu

Hydrogels, as a class of materials for tissue engineering and drug delivery, have high water content and solid-like mechanical properties. Currently, hydrogels with an antibacterial function are a research hotspot in biomedical field. Many advanced antibacterial hydrogels have been developed, each possessing unique qualities, namely high water swellability, high oxygen permeability, improved biocompatibility, ease of loading and releasing drugs and structural diversity. In this article, an overview is provided on the preparation and applications of various antibacterial hydrogels. Furthermore, the prospects in biomedical researches and clinical applications are predicted.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Lei Xiang ◽  
Wenguo Cui

Abstract During the past decades, photo-crosslinked gelatin hydrogel (methacrylated gelatin, GelMA) has gained a lot of attention due to its remarkable application in the biomedical field. It has been widely used in cell transplantation, cell culture and drug delivery, based on its crosslinking to form hydrogels with tunable mechanical properties and excellent bio-compatibility when exposed to light irradiation to mimic the micro-environment of native extracellular matrix (ECM). Because of its unique biofunctionality and mechanical tenability, it has also been widely applied in the repair and regeneration of bone, heart, cornea, epidermal tissue, cartilage, vascular, peripheral nerve, oral mucosa, and skeletal muscle et al. The purpose of this review is to summarize the recent application of GelMA in drug delivery and tissue engineering field. Moreover, this review article will briefly introduce both the development of GelMA and the characterization of GelMA. Finally, we discuss the challenges and future development prospects of GelMA as a tissue engineering material and drug or gene delivery carrier, hoping to contribute to accelerating the development of GelMA in the biomedical field. Graphical abstract


The researchers across the world are actively engaged in strategic development of new porous aerogel materials for possible application of these extraordinary materials in the biomedical field. Due to their excellent porosity and established biocompatibility, aerogels are now emerging as viable solutions for drug delivery and other biomedical applications. This chapter aims to cover the diverse aerogel materials used across the globe for different biomedical applications including drug delivery, implantable devices, regenerative medicine encompassing tissue engineering and bone regeneration, and biosensing.


2020 ◽  
Vol 4 (4) ◽  
pp. 1089-1104 ◽  
Author(s):  
Fang Fang ◽  
Fanling Meng ◽  
Liang Luo

This review summarized most recent advances of designing strategies of polydiacetylene-based smart biomaterials with unique colorimetric and mechanical properties, as well as their applications in biosensing, drug delivery, and tissue engineering.


2014 ◽  
Vol 34 (2) ◽  
pp. 123-127 ◽  
Author(s):  
Eujin Pei

Purpose – This feature article aims to review state-of-the-art developments in additive manufacture, in particular, 4D printing. It discusses what it is, what research has been carried out and maps potential applications and its future impact. Design/methodology/approach – The article first defines additive manufacturing technologies and goes on to describe the state-of-the-art. Following which the paper examines several case studies and maps a trend that shows an emergence of 4D printing. Findings – The case studies highlight a particular specialization within additive manufacture where the use of adaptive, biomimetic composites can be programmed to reshape, or have embedded properties or functionality that transform themselves when subjected to external stimuli. Originality/value – This paper discusses the state-of-the-art of additive manufacture, discussing strategies that can be used to reduce the print process (such as through kinematics); and the use of smart materials where parts adapt themselves in response to the surrounding environment supporting the notion of self-assemblies.


RSC Advances ◽  
2016 ◽  
Vol 6 (71) ◽  
pp. 66438-66443 ◽  
Author(s):  
Adam L. Fisher ◽  
Julia M. H. Schollick ◽  
Dirk G. A. L. Aarts ◽  
Martin C. Grossel

Novel thermo-gelling polymers based on poly(2-alkyl-2-oxazoline)s grafted onto a polar carboxymethylcellulose backbone gel are reported which have potential applications in areas such as drug delivery and tissue engineering.


2007 ◽  
Vol 539-543 ◽  
pp. 577-582
Author(s):  
Silvia Bubeníková ◽  
Igor Lacík ◽  
Dušan Bakoš ◽  
Lucia Vodná

The paper presents the first part of the work focused on preparation of biodegradable chitosan microcapsules with tailored properties for potential applications in medical field as drug temporary carriers. In this paper, we aimed to prepare chitosan and chondroitin sulphate microcapsules using TPP as the second cross-linker and investigate the formation of the capsule membrane and its permeability in dependence on conditions of polyionic complexation. As a model, TPP was used to assess an influence of concentration and reaction time on the microcapsule formation. The method of inverse SEC was used for pores size and permeability limit of capsules assessment. For chitosan/CHS/TPP capsules, the distribution of pores size in the membrane is rather broad, which can be suitable for applications in tissue engineering and drug delivery systems.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Chengkang Tang ◽  
Feng Qiu ◽  
Xiaojun Zhao

Self-assembling surfactant-like peptides have been explored as emerging nanobiomaterials in recent years. These peptides are usually amphiphilic, typically possessing a hydrophobic moiety and a hydrophilic moiety. The structural characteristics can promote many peptide molecules to self-assemble into various nanostructures. Furthermore, properties of peptide molecules such as charge distribution and geometrical shape could also alter the formation of the self-assembling nanostructures. Based on their diverse self-assembling behaviours and nanostructures, self-assembling surfactant-like peptides exhibit great potentials in many fields, including membrane protein stabilization, drug delivery, and tissue engineering. This review mainly focuses on recent advances in studying self-assembling surfactant-like peptides, introducing their designs and the potential applications in nanobiotechnology.


2008 ◽  
Vol 308 (1-2) ◽  
pp. 1-34 ◽  
Author(s):  
Dimitrios F. Stamatialis ◽  
Bernke J. Papenburg ◽  
Miriam Gironés ◽  
Saiful Saiful ◽  
Srivatsa N.M. Bettahalli ◽  
...  

2021 ◽  
Vol 11 (5-S) ◽  
pp. 131-137
Author(s):  
Ahmar Khan ◽  
Mir Javid Iqbal ◽  
Saima Amin ◽  
Humaira Bilal ◽  
, Bilquees ◽  
...  

With the approval of first 3D printed drug “spritam” by USFDA, 3D printing is gaining acceptance in healthcare, engineering and other aspects of life. Taking 3D printing towards the next step gives birth to what is referred to as “4D printing”. The full credit behind the unveiling of 4D printing technology in front of the world goes to Massachusetts Institute of Technology (MIT), who revealed “time” in this technology as the fourth dimension.  4D printing is a renovation of 3D printing wherein special materials (referred to as smart materials) are incorporated which change their morphology post printing in response to a stimulus. Depending upon the applicability of this technology, there may be a variety of stimuli, most common among them being pH, water, heat, wind and other forms of energy.  The upper hand of 4D printing over 3D printing is that 3D printed structures are generally immobile, rigid and inanimate whereas 4D printed structures are flexible, mobile and able to interact with the surrounding environment based on the stimulus. This capability of 4D printing to transform 3D structures into smart structures in response to various stimuli promises a great potential for biomedical and bioengineering applications. The potential of 4D printing in developing pre-programmed biomaterials that can undergo transformations lays new foundations for enabling smart pharmacology, personalized medicine, and smart drug delivery, all of which can help in combating diseases in a smarter way. Hence, the theme of this paper is about the potential of 4D printing in creating smart drug delivery, smart pharmacology, targeted drug delivery and better patient compliance. The paper highlights the recent advancements of 4D printing in healthcare sector and ways by which 4D printing is doing wonders in creating smart drug delivery and tailored medicine. The major constraints in the approach have also been highlighted. Keywords: 4D printing, smart, drug delivery system, patient compliance, biomaterials, tailored medicine


Sign in / Sign up

Export Citation Format

Share Document