Single-cell atlas of splenocytes reveals a critical role of a novel plasma cell‒specific marker Hspa13 in antibody class-switching recombination and somatic hypermutation

2022 ◽  
Vol 141 ◽  
pp. 79-86
Author(s):  
Bing Zhai ◽  
Xiaoling Liu ◽  
Yaqi Xu ◽  
Gaizhi Zhu ◽  
Shan Zhou ◽  
...  
2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii24-iii24
Author(s):  
Q Chang ◽  
L Zhu ◽  
N Li

Abstract BACKGROUND Medulloblastoma (MB) is the most common malignant paediatric brain tumor. Recent studies show that M2 cells were relative more abundant in Shh subtype of MBs compared with other three subtypes. It’s known that M2 cells have close relationship with many tumors’ progression. But if they play any role in the progression of Shh subtype of MB is not yet clear. Many studies demonstrate that exosomes carring miRNAs have close relationship with tumor invasion. The aim of present study is to clarify the role of exosome miRNA between tumor cells and microglias during the progression of Shh subtype of medulloblastoma. MATERIAL AND METHODS Immunofluerescence staining using iNOS and Arg1, which is M1 and M2 specific marker, respectively, was performed in four subtypes of MBs. After coculture of exosomes extracted from Shh subtype of MB cell (DAOY) with microglia cell (BV2), Q-PCR and ELISA assay were done to evaluate the polarization status of the microglia. Transwell and scratch assay were then performed to detect the migration ability of DAOY cell after treatment of exosomes from polirized M2 cells. MiRNA sequencing by Ion Proton technology was then done to analyze the miRNAs expression level between Shh subtype and other subtype of MBs. Transformation assay was used to overexpress and inhibit the expression of these miRNAs respectively to further clarify the role of exosome miRNA in the polarization of BV2 cells. RESULTS M2 cells were observed more abundant than other three subtypes of tumors, supporting that M2 cells play some role in this subtype of MBs. Exosomes of DAOY cells can induce the polarization of M2 cells. The polarized M2 cells can improved the migration and invasion ability of DAOY cell. Dozens of miRNAs were identified with different expression level between Shh subtype of MBs and other subtype of MB cells. Among them, 4 miRNAs were reported to be related with polariztion of M2 in many other lesions. Three of the 4 miRNAs can induce the polarization of M2 in present study. CONCLUSION Our study demonstrated exosome miRNA play a critical role between tumor cells and microglias during the progression of Shh subtype of medulloblastoma.


Author(s):  
Cong He ◽  
Luoyan Sheng ◽  
Deshen Pan ◽  
Shuai Jiang ◽  
Li Ding ◽  
...  

High-grade glioma is one of the most lethal human cancers characterized by extensive tumor heterogeneity. In order to identify cellular and molecular mechanisms that drive tumor heterogeneity of this lethal disease, we performed single-cell RNA sequencing analysis of one high-grade glioma. Accordingly, we analyzed the individual cellular components in the ecosystem of this tumor. We found that tumor-associated macrophages are predominant in the immune microenvironment. Furthermore, we identified five distinct subpopulations of tumor cells, including one cycling, two OPC/NPC-like and two MES-like cell subpopulations. Moreover, we revealed the evolutionary transition from the cycling to OPC/NPC-like and MES-like cells by trajectory analysis. Importantly, we found that SPP1/CD44 interaction plays a critical role in macrophage-mediated activation of MES-like cells by exploring the cell-cell communication among all cellular components in the tumor ecosystem. Finally, we showed that high expression levels of both SPP1 and CD44 correlate with an increased infiltration of macrophages and poor prognosis of glioma patients. Taken together, this study provided a single-cell atlas of one high-grade glioma and revealed a critical role of macrophage-mediated SPP1/CD44 signaling in glioma progression, indicating that the SPP1/CD44 axis is a potential target for glioma treatment.


2021 ◽  
Author(s):  
Florian Bieberich ◽  
Rodrigo Vazquez-Lombardi ◽  
Alexander Yermanos ◽  
Roy A. Ehling ◽  
Derek M. Mason ◽  
...  

AbstractCOVID-19 disease outcome is highly dependent on adaptive immunity from T and B lymphocytes, which play a critical role in the control, clearance and long-term protection against SARS-CoV-2. To date, there is limited knowledge on the composition of the T and B cell immune receptor repertoires [T cell receptors (TCRs) and B cell receptors (BCRs)] and transcriptomes in convalescent COVID-19 patients of different age groups. Here, we utilize single-cell sequencing (scSeq) of lymphocyte immune repertoires and transcriptomes to quantitatively profile the adaptive immune response in COVID-19 patients of varying age. We discovered highly expanded T and B cells in multiple patients, with the most expanded clonotypes coming from the effector CD8+ T cell population. Highly expanded CD8+ and CD4+ T cell clones show elevated markers of cytotoxicity (CD8: PRF1, GZMH, GNLY; CD4: GZMA), whereas clonally expanded B cells show markers of transition into the plasma cell state and activation across patients. By comparing young and old convalescent COVID-19 patients (mean ages = 31 and 66.8 years, respectively), we found that clonally expanded B cells in young patients were predominantly of the IgA isotype and their BCRs had incurred higher levels of somatic hypermutation than elderly patients. In conclusion, our scSeq analysis defines the adaptive immune repertoire and transcriptome in convalescent COVID-19 patients and shows important age-related differences implicated in immunity against SARS-CoV-2.


Circulation ◽  
2021 ◽  
Vol 143 (15) ◽  
pp. 1513-1525
Author(s):  
Deepak Ramanujam ◽  
Anna Patricia Schön ◽  
Christina Beck ◽  
Paula Vaccarello ◽  
Giulia Felician ◽  
...  

Background: Cardiac macrophages (cMPs) are increasingly recognized as important regulators of myocardial homeostasis and disease, yet the role of noncoding RNA in these cells is largely unknown. Small RNA sequencing of the entire miRNomes of the major cardiac cell fractions revealed microRNA-21 (miR-21) as the single highest expressed microRNA in cMPs, both in health and disease (25% and 43% of all microRNA reads, respectively). MiR-21 has been previously reported as a key microRNA driving tissue fibrosis. Here, we aimed to determine the function of macrophage miR-21 on myocardial homeostasis and disease-associated remodeling. Methods: Macrophage-specific ablation of miR-21 in mice driven by Cx3cr1-Cre was used to determine the function of miR-21 in this cell type. As a disease model, mice were subjected to pressure overload for 6 and 28 days. Cardiac function was assessed in vivo by echocardiography, followed by histological analyses and single-cell sequencing. Cocultures of macrophages and cardiac fibroblasts were used to study macrophage-to-fibroblast signaling. Results: Mice with macrophage-specific genetic deletion of miR-21 were protected from interstitial fibrosis and cardiac dysfunction when subjected to pressure overload of the left ventricle. Single-cell sequencing of pressure-overloaded hearts from these mice revealed that miR-21 in macrophages is essential for their polarization toward a M1-like phenotype. Systematic quantification of intercellular communication mediated by ligand-receptor interactions across all cell types revealed that miR-21 primarily determined macrophage-fibroblast communication, promoting the transition from quiescent fibroblasts to myofibroblasts. Polarization of isolated macrophages in vitro toward a proinflammatory (M1-like) phenotype activated myofibroblast transdifferentiation of cardiac fibroblasts in a paracrine manner and was dependent on miR-21 in cMPs. Conclusions: Our data indicate a critical role of cMPs in pressure overload–induced cardiac fibrosis and dysfunction and reveal macrophage miR-21 as a key molecule for the profibrotic role of cMPs.


2021 ◽  
Vol 118 (10) ◽  
pp. e2023438118
Author(s):  
Haikel N. Bogale ◽  
Tales V. Pascini ◽  
Sachie Kanatani ◽  
Juliana M. Sá ◽  
Thomas E. Wellems ◽  
...  

Despite the critical role of Plasmodium sporozoites in malaria transmission, we still know little about the mechanisms underlying their development in mosquitoes. Here, we use single-cell RNA sequencing to characterize the gene expression profiles of 16,038 Plasmodium berghei sporozoites isolated throughout their development from midgut oocysts to salivary glands, and from forced salivation experiments. Our results reveal a succession of tightly regulated changes in gene expression occurring during the maturation of sporozoites and highlight candidate genes that could play important roles in oocyst egress, sporozoite motility, and the mechanisms underlying the invasion of mosquito salivary glands and mammalian hepatocytes. In addition, the single-cell data reveal extensive transcriptional heterogeneity among parasites isolated from the same anatomical site, suggesting that Plasmodium development in mosquitoes is asynchronous and regulated by intrinsic as well as environmental factors. Finally, our analyses show a decrease in transcriptional activity preceding the translational repression observed in mature sporozoites and associated with their quiescent state in salivary glands, followed by a rapid reactivation of the transcriptional machinery immediately upon salivation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Florian Bieberich ◽  
Rodrigo Vazquez-Lombardi ◽  
Alexander Yermanos ◽  
Roy A. Ehling ◽  
Derek M. Mason ◽  
...  

COVID-19 disease outcome is highly dependent on adaptive immunity from T and B lymphocytes, which play a critical role in the control, clearance and long-term protection against SARS-CoV-2. To date, there is limited knowledge on the composition of the T and B cell immune receptor repertoires [T cell receptors (TCRs) and B cell receptors (BCRs)] and transcriptomes in convalescent COVID-19 patients of different age groups. Here, we utilize single-cell sequencing (scSeq) of lymphocyte immune repertoires and transcriptomes to quantitatively profile the adaptive immune response in COVID-19 patients of varying age. We discovered highly expanded T and B cells in multiple patients, with the most expanded clonotypes coming from the effector CD8+ T cell population. Highly expanded CD8+ and CD4+ T cell clones show elevated markers of cytotoxicity (CD8: PRF1, GZMH, GNLY; CD4: GZMA), whereas clonally expanded B cells show markers of transition into the plasma cell state and activation across patients. By comparing young and old convalescent COVID-19 patients (mean ages = 31 and 66.8 years, respectively), we found that clonally expanded B cells in young patients were predominantly of the IgA isotype and their BCRs had incurred higher levels of somatic hypermutation than elderly patients. In conclusion, our scSeq analysis defines the adaptive immune repertoire and transcriptome in convalescent COVID-19 patients and shows important age-related differences implicated in immunity against SARS-CoV-2.


2019 ◽  
Vol 7 ◽  
Author(s):  
Rui Wang ◽  
Yihui Wang ◽  
Bin Yao ◽  
Tian Hu ◽  
Zhao Li ◽  
...  

Abstract Background Mammary progenitor cells (MPCs) maintain their reproductive potency through life, and their specific microenvironments exert a deterministic control over these cells. MPCs provides one kind of ideal tools for studying engineered microenvironmental influence because of its accessibility and continually undergoes postnatal developmental changes. The aim of our study is to explore the critical role of the engineered sweat gland (SG) microenvironment in reprogramming MPCs into functional SG cells. Methods We have utilized a three-dimensional (3D) SG microenvironment composed of gelatin-alginate hydrogels and components from mouse SG extracellular matrix (SG-ECM) proteins to reroute the differentiation of MPCs to study the functions of this microenvironment. MPCs were encapsulated into the artificial SG microenvironment and were printed into a 3D cell-laden construct. The expression of specific markers at the protein and gene levels was detected after cultured 14 days. Results Compared with the control group, immunofluorescence and gene expression assay demonstrated that MPCs encapsulated in the bioprinted 3D-SG microenvironment could significantly express the functional marker of mouse SG, sodium/potassium channel protein ATP1a1, and tend to express the specific marker of luminal epithelial cells, keratin-8. When the Shh pathway is inhibited, the expression of SG-associated proteins in MPCs under the same induction environment is significantly reduced. Conclusions Our evidence proved the ability of differentiated mouse MPCs to regenerate SG cells by engineered SG microenvironment in vitro and Shh pathway was found to be correlated with the changes in the differentiation. These results provide insights into regeneration of damaged SG by MPCs and the role of the engineered microenvironment in reprogramming cell fate.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1151-1151
Author(s):  
Juleta H. Sepulveda-Yanez ◽  
Diego Alvarez-Saravia ◽  
Edwin Quinten ◽  
Roberta Menafra ◽  
Susan L. Kloet ◽  
...  

Abstract Introduction Follicular Lymphoma (FL) is one of the most prevalent B-cell neoplasms and despite recent advances remains incurable in most cases. FL cells are malignant counterparts of normal germinal center B-cells. At molecular level FL are characterized by the t(14;18) which results in the overexpression of the BCL-2. These apoptosis resistant cells accumulate somatic mutations associated with tumorigenesis and progression. Whereas several mutagenic mechanisms shape the FL genomic landscape, up to 22% of the mutations may be attributed to activation-induced cytidine deaminase (AID) activity. Under physiological conditions AID is responsible for somatic hypermutation (SHM) in immunoglobulin genes (IG) of germinal center B-cells. In fact, it is accepted that ongoing SHM still occurs at relatively high rates in FL cells as compared with other germinal center lymphoid neoplasms. Moreover, we recently demonstrated the direct effect of AID overexpression inducing somatic mutations driving murine and human B-cell neoplasm progression in vivo. Therefore, unveiling the molecular basis of AID activity in lymphoma cells remains essential to understand lymphomagenesis and to develop novel targeted therapies. The advent of single-cell high-throughput sequencing has enabled the analysis of molecular events at an unprecedented resolution. Therefore, we designed a study to capture AID-induced somatic hypermutation at the single cell level in FL. Methods Tumor samples derived from 14 FL patients were analyzed, as controls, we chose a B-cell malignancy with lower SHM rates and included 5 samples derived from chronic lymphocytic leukemia (CLL) and 2 from monoclonal B lymphocytosis (MBL). Single cell whole cDNA libraries were obtained by 10X Genomics. Immunoglobulin gene single cell libraries were prepared by enrichment with seminested amplification using 3 ′ constant domain primers followed by 10X Genomics prep. Both single-cell libraries were sequenced in paired-end mode (2 × 150 bp) on an Illumina Hiseq platform. We developed an immunoglobulin alignment tool to enable the analysis of highly mutated IG sequences derived from FL. A consensus sequence was obtained by transcript associated with a unique molecular identifier (UMI) for every cell. Then, the presence of variants in the IG by position in a particular cell was annotated. These observations were filtered using quality parameters (read depth => 25 , frequency of the event => 20%, UMIs supporting every variant => 5). Results We analyzed an average of 926 cells per case. Our data confirms at the single cell level previous reports on high clonal heterogeneity and hypermutation rate (mean 18.7%) in FL. When analyzing intracellular heterogeneity we observed single FL cells expressing simultaneously transcripts derived from the same immunoglobulin VDJ rearrangement but displaying high confidence single nucleotide variants. After applying strict filtering strategies to account for potential technical issues we defined the occurrence of "SHM snapshot events'' when a single cell displayed a set of transcripts from a particular VDJ rearrangement with and without the occurring single nucleotide variant. Such events were detected in 8 of the 14 FL analyzed samples. In those 8 samples, 114 events were observed in which two different transcripts of one specific IG were found within a single cell. AID-related motifs (WRCY, WA and RCG) were found in 45% of the SHM snapshot events. SHM snapshot events were undetectable in CLL (5 samples) and 3 SHM snapshot events were detected in MBL (2 samples). In addition, the occurrence of SHM snapshot events was significantly associated with AID expression (Fisher exact test, p-value < 0.001). On the other hand, AID expression was not detectable on CLL and MBL samples. Conclusion Here we report for the first time the occurrence of ongoing somatic hypermutation at a single cell level in FL. The simultaneous detection of both the pre and post mutation IG mRNA transcripts within a single cell may be indicative of SHM occurring more recently than the lifespan of mRNA transcript. The detection of this phenomenon in 57% of FL samples and its association with AID expression suggests that AID-induced mutagenesis may be acting at a much higher rate than expected. This work highlights the role of AID in shaping the tumor heterogeneity in FL and the need to further understand the role of this enzyme in lymphomagenesis and tumor progression. Disclosures No relevant conflicts of interest to declare.


2015 ◽  
Vol 212 (7) ◽  
pp. 1001-1009 ◽  
Author(s):  
Kim L. Good-Jacobson ◽  
Kristy O’Donnell ◽  
Gabrielle T. Belz ◽  
Stephen L. Nutt ◽  
David M. Tarlinton

Plasma cell migration is crucial to immunity, but little is known about the molecular regulators of their migratory programs. Here, we detail the critical role of the transcription factor c-Myb in determining plasma cell location. In the absence of c-Myb, no IgG+ antigen-specific plasma cells were detected in the bone marrow after immunization or virus infection. This was correlated with a dramatic reduction of plasma cells in peripheral blood, mislocalization in spleen, and an inability of c-Myb–deficient plasma cells to migrate along a CXCL12 gradient. Therefore, c-Myb plays an essential, novel role in establishing the long-lived plasma cell population in the BM via responsiveness to chemokine migration cues.


Sign in / Sign up

Export Citation Format

Share Document