Influence of rf power on growth, structural and optical properties of ZnO synthesized via vapor transport in inductively coupled plasma

2020 ◽  
Vol 120 ◽  
pp. 105284
Author(s):  
F.M. El-Hossary ◽  
S.H. Mohamed ◽  
E.A. Noureldein ◽  
M. Abo EL-Kassem
2014 ◽  
Vol 116 (17) ◽  
pp. 173503 ◽  
Author(s):  
Martin Steglich ◽  
Thomas Käsebier ◽  
Matthias Zilk ◽  
Thomas Pertsch ◽  
Ernst-Bernhard Kley ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Jongwon Lee ◽  
Kilsun Roh ◽  
Sung-Kyu Lim ◽  
Youngsu Kim

This is the first demonstration of sidewall slope control of InP via holes with an etch depth of more than 10 μm for 3D integration. The process for the InP via holes utilizes a common SiO2 layer as an InP etch mask and conventional inductively coupled plasma (ICP) etcher operated at room temperature and simple gas mixtures of Cl2/Ar for InP dry etch. Sidewall slope of InP via holes is controlled within the range of 80 to 90 degrees by changing the ICP power in the ICP etcher and adopting a dry-etched SiO2 layer with a sidewall slope of 70 degrees. Furthermore, the sidewall slope control of the InP via holes in a wide range of 36 to 69 degrees is possible by changing the RF power in the etcher and introducing a wet-etched SiO2 layer with a small sidewall slope of 2 degrees; this wide slope control is due to the change of InP-to-SiO2 selectivity with RF power.


Author(s):  
Ju Ho Kim ◽  
Chin-Wook Chung

Abstract We investigated the plasma and electrical characteristics depending on the antenna position in an inductively coupled plasma with a passive resonant antenna. When the powered antenna and passive resonant antenna are installed near the top plate and in the middle of the cylindrical reactor (Setup A), respectively, the ion density at the resonance is about 2.4 times to 9 times higher than that at non-resonance. This is explained by the reduction in power loss in the powered antenna (including the matching circuits) and the increase in power absorbed by the plasma discharge. However, when the powered antenna and passive resonant antenna are interchanged (Setup B), the ion density at the resonance is not significantly different from that at the non-resonance. When RF power is changed from 50 W to 200 W, the ion density at the resonance of Setup B is 1.6 times to 5.4 times higher than at the non-resonance of Setup A. To analyse this difference, the profile of the z-axis ion density is measured and the electric and magnetic field simulations are investigated. The results are discussed along with the electron kinetics effect and the coupling loss between the antenna and the metal plate.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2562
Author(s):  
Pierre-Marie Coulon ◽  
Peng Feng ◽  
Tao Wang ◽  
Philip A. Shields

The formation of gallium nitride (GaN) semi-polar and non-polar nanostructures is of importance for improving light extraction/absorption of optoelectronic devices, creating optical resonant cavities or reducing the defect density. However, very limited studies of nanotexturing via dry etching have been performed, in comparison to wet etching. In this paper, we investigate the formation and morphology of semi-polar (112¯2) and non-polar (112¯0) GaN nanorods using inductively coupled plasma (ICP) etching. The impact of gas chemistry, pressure, temperature, radio-frequency (RF) and ICP power and time are explored. A dominant chemical component is found to have a significant impact on the morphology, being impacted by the polarity of the planes. In contrast, increasing the physical component enables the impact of crystal orientation to be minimized to achieve a circular nanorod profile with inclined sidewalls. These conditions were obtained for a small percentage of chlorine (Cl2) within the Cl2 + argon (Ar) plasma combined with a low pressure. Damage to the crystal was reduced by lowering the direct current (DC) bias through a reduction of the RF power and an increase of the ICP power.


Processes ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 133 ◽  
Author(s):  
Sangeeta Punjabi ◽  
Dilip Barve ◽  
Narendra Joshi ◽  
Asoka Das ◽  
Dushyant Kothari ◽  
...  

In this article, electrical characteristics of a high-power inductively-coupled plasma (ICP) torch operating at 3 MHz are determined by direct measurement of radio-frequency (RF) current and voltage together with energy balance in the system. The variation of impedance with two parameters, namely the input power and the sheath gas flow rate for a 50 kW ICP is studied. The ICP torch system is operated at near atmospheric pressure with argon as plasma gas. It is observed that the plasma resistance increases with an increase in the RF-power. Further, the torch inductance decreases with an increase in the RF-power. In addition, plasma resistance and torch inductance decrease with an increase in the sheath gas flow rate. The oscillator efficiency of the ICP system ranges from 40% to 80% with the variation of the Direct current (DC) powers. ICP has also been numerically simulated using Computational Fluid Dynamics (CFD) to predict the impedance profile. A good agreement was found between the CFD predictions and the impedance experimental data published in the literature.


1988 ◽  
Vol 117 ◽  
Author(s):  
N. S. Nogar ◽  
G. L. Keaton ◽  
J. E. Anderson ◽  
M. Trkula

AbstractEmission spectroscopy and laser-induced fluorescence have been used to monitor the field and tail-flame regions of a Hull-design 1 inductively coupled plasma. This plasma is used for a variety of syntheses 2,3 including SiC, TiC, BN, AlN and diamond. Temporallyand spatially-resolved spectra of both pure Ar and Ar/gas mixtures have been studied as a function of RF power, pressure and flow rate. Preliminary data suggest that the system is far from local thermodynamic equilibrium.


2009 ◽  
Vol 6 (S1) ◽  
pp. S582-S587 ◽  
Author(s):  
Sandro Jatta ◽  
Klaus Haberle ◽  
Andreas Klein ◽  
Robert Schafranek ◽  
Benjamin Koegel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document