Effects of 532 nm laser-assisted annealing on metal contact to p-GaN

2022 ◽  
Vol 140 ◽  
pp. 106371
Author(s):  
Xinwei Wang ◽  
Xuecheng Wei ◽  
Ning Zhang ◽  
Guowei Han ◽  
Jie Zhao ◽  
...  
Keyword(s):  
2020 ◽  
pp. 3-5
Author(s):  
Y. G. Zakharenko ◽  
N. A. Kononova ◽  
V. L. Fedorin ◽  
Z. V. Fomkina ◽  
K. V. Chekirda

The results of the work to create a complex of high-precision hardware for the unit of length reproduction and transferring carried out at “D. I. Mendeleyev Institute for Metrology (VNIIM)” are represented. This complex will serve as the basis for the further development of the reference base of the Russian Federation in the field of length measurements and will allow reproduction of the unit of length at two wavelengths of 633 nm and 532 nm, as well as measurements of the wavelength of laser sources in vacuum in the range from 500 to 1050 nm.


2020 ◽  
pp. 139-143

Natural dyes were followed and prepared from a pomegranate, purple carrot, and eggplant peel. The absorbance spectra was measured in the wavelength range 300-800 nm. The linear properties measurements of the prepared natural dye freestanding films were determined include absorption coefficient (α0), extinction coefficient (κ), and linear refraction index (n). The nonlinear refractive index n2 and nonlinear absorption coefficient β2 of the natural dyes in the water solution were measured by the optical z-scan technique under a pumped solid state laser at a laser wavelength of 532 nm. The results indicated that the pomegranate dye can be promising candidates for optical limiting applications with significantly low optical limiting of 3.5 mW.


2018 ◽  
pp. 20-22
Author(s):  
D.A. Goydin ◽  
◽  
S.V. Shutova ◽  
A.P. Goydin ◽  
O.L. Fabrikantov ◽  
...  
Keyword(s):  

2014 ◽  
Vol 52 (6) ◽  
pp. 89-94
Author(s):  
N. Dumbrova ◽  
◽  
N. Molchanyuk ◽  
T. Romanova ◽  
N. Gavronskaya ◽  
...  

2004 ◽  
Vol 14 (8) ◽  
pp. 573-578
Author(s):  
Ohsung Song ◽  
Sungjin Beom ◽  
Dugjoong Kim
Keyword(s):  

2019 ◽  
Vol 11 (22) ◽  
pp. 2614 ◽  
Author(s):  
Nina Amiri ◽  
Peter Krzystek ◽  
Marco Heurich ◽  
Andrew Skidmore

Knowledge about forest structures, particularly of deadwood, is fundamental for understanding, protecting, and conserving forest biodiversity. While individual tree-based approaches using single wavelength airborne laserscanning (ALS) can successfully distinguish broadleaf and coniferous trees, they still perform multiple tree species classifications with limited accuracy. Moreover, the mapping of standing dead trees is becoming increasingly important for damage calculation after pest infestation or biodiversity assessment. Recent advances in sensor technology have led to the development of new ALS systems that provide up to three different wavelengths. In this study, we present a novel method which classifies three tree species (Norway spruce, European beech, Silver fir), and dead spruce trees with crowns using full waveform ALS data acquired from three different sensors (wavelengths 532 nm, 1064 nm, 1550 nm). The ALS data were acquired in the Bavarian Forest National Park (Germany) under leaf-on conditions with a maximum point density of 200 points/m 2 . To avoid overfitting of the classifier and to find the most prominent features, we embed a forward feature selection method. We tested our classification procedure using 20 sample plots with 586 measured reference trees. Using single wavelength datasets, the highest accuracy achieved was 74% (wavelength = 1064 nm), followed by 69% (wavelength = 1550 nm) and 65% (wavelength = 532 nm). An improvement of 8–17% over single wavelength datasets was achieved when the multi wavelength data were used. Overall, the contribution of the waveform-based features to the classification accuracy was higher than that of the geometric features by approximately 10%. Our results show that the features derived from a multi wavelength ALS point cloud significantly improve the detailed mapping of tree species and standing dead trees.


2021 ◽  
Vol 13 (14) ◽  
pp. 2769
Author(s):  
Xiaomei Lu ◽  
Yongxiang Hu ◽  
Ali Omar ◽  
Rosemary Baize ◽  
Mark Vaughan ◽  
...  

Recent studies indicate that the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite provides valuable information about ocean phytoplankton distributions. CALIOP’s attenuated backscatter coefficients, measured at 532 nm in receiver channels oriented parallel and perpendicular to the laser’s linear polarization plane, are significantly improved in the Version 4 data product. However, due to non-ideal instrument effects, a small fraction of the backscattered optical power polarized parallel to the receiver polarization reference plane is misdirected into the perpendicular channel, and vice versa. This effect, known as polarization crosstalk, typically causes the measured perpendicular signal to be higher than its true value and the measured parallel signal to be lower than its true value. Therefore, the ocean optical properties derived directly from CALIOP’s measured signals will be biased if the polarization crosstalk effect is not taken into account. This paper presents methods that can be used to estimate the CALIOP crosstalk effects from on-orbit measurements. The global ocean depolarization ratios calculated both before and after removing the crosstalk effects are compared. Using CALIOP crosstalk-corrected signals is highly recommended for all ocean subsurface studies.


Nanophotonics ◽  
2020 ◽  
Vol 9 (15) ◽  
pp. 4505-4518
Author(s):  
Sarath Raman Nair ◽  
Lachlan J. Rogers ◽  
Xavier Vidal ◽  
Reece P. Roberts ◽  
Hiroshi Abe ◽  
...  

AbstractLaser threshold magnetometry using the negatively charged nitrogen-vacancy (NV−) centre in diamond as a gain medium has been proposed as a technique to dramatically enhance the sensitivity of room-temperature magnetometry. We experimentally explore a diamond-loaded open tunable fibre-cavity system as a potential contender for the realisation of lasing with NV− centres. We observe amplification of the transmission of a cavity-resonant seed laser at 721 nm when the cavity is pumped at 532 nm and attribute this to stimulated emission. Changes in the intensity of spontaneously emitted photons accompany the amplification, and a qualitative model including stimulated emission and ionisation dynamics of the NV− centre captures the dynamics in the experiment very well. These results highlight important considerations in the realisation of an NV− laser in diamond.


Author(s):  
Zahra Al-Timimi

Many considerable investigations focused on the stimulation of therapeutic manners of infected injuries in mice. The exaggerated pathogens that induced wounds were gram-positive like staphylococcal and gram-negative, for example, Pseudomonas aeuroginosa and Acinetobacter baumannii. Acinetobacter can generate a scale range of an infection that may be received in a hospital or any wellness concern facility. In order to know the significance of laser 532 nm with a constant irradiance at various exposure times on the healing process of wounds infected by Acinetobacter baumannii, this study was performed on the BALB/C mice. An elliptical full-thickness skin injury was made on the backside of 45 adult female (BALB/C) mice. Injuries were affected via Acinetobacter baumannii and were randomly assigned into 3 groups. Semiconductor diode continuous wave laser, λ = 532 nm, with output power 40 mW was used. The power density was 5.71 mW/cm2, while the fluencies were 1.7 J/cm2 and 5.14 J/cm2. Fifteen mice were classified according to the times of irradiation. The first group was infected and presented as control, without irradiation. The second group was infected and irradiated for 5 minutes. The third group, likewise, was infected but irradiated for 15 minutes. All groups were subdivided according to the following period, 3, 5, and 10 days, after irradiation and the animals were killed after the treatment. Wound healing was made by measuring the rate of wound closure and histopathological evaluation. The study determined that 532 nm laser therapy had an obvious and positive influence on the healing of infected wounds with fluence (5.14 J/cm2).


Sign in / Sign up

Export Citation Format

Share Document