Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson's disease

2008 ◽  
Vol 60 (2) ◽  
pp. 156-161 ◽  
Author(s):  
Li-Xing Liu ◽  
Wen-Fang Chen ◽  
Jun-Xia Xie ◽  
Man-Sau Wong
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ting Sun ◽  
Zhe-Xu Ding ◽  
Xin Luo ◽  
Qing-Shan Liu ◽  
Yong Cheng

Parkinson’s disease (PD) is a common and complex neurodegenerative disease; the pathogenesis of which is still uncertain. Exosomes, nanosized extracellular vesicles, have been suggested to participate in the pathogenesis of PD, but their role is unknown. Here, a metabolomic analysis of serum and brain exosomes showed differentially expressed metabolites between 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine hydrochloride- (MPTP-) induced PD mice and control mice, such as oxidized lipids, vitamins, and cholesterol. These metabolites were enriched in coenzyme, nicotinamide, and amino acid pathways related to PD, and they could be served as preclinical biomarkers. We further found that blood-derived exosomes from healthy volunteers alleviated impaired motor coordination in MPTP-treated mice. Results from immunohistochemistry and western blotting indicated that the loss of dopaminergic neurons in substantia nigra and striatum of PD model mice was rescued by the exosome treatment. The exosome treatment also restored the homeostasis of oxidative stress, neuroinflammation, and cell apoptosis in the model mice. These results suggest that exosomes are important mediators for PD pathogenesis, and exosomes are promising targets for the diagnosis and treatment of PD.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Jialong Chen ◽  
Kanmin Mao ◽  
Honglin Yu ◽  
Yue Wen ◽  
Hua She ◽  
...  

Abstract Background Parkinson’s disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), accompanied by accumulation of α-synuclein, chronic neuroinflammation and autophagy dysfunction. Previous studies suggested that misfolded α-synuclein induces the inflammatory response and autophagy dysfunction in microglial cells. The NLRP3 inflammasome signaling pathway plays a crucial role in the neuroinflammatory process in the central nervous system. However, the relationship between autophagy deficiency and NLRP3 activation induced by α-synuclein accumulation is not well understood. Methods Through immunoblotting, immunocytochemistry, immunofluorescence, flow cytometry, ELISA and behavioral tests, we investigated the role of p38-TFEB-NLRP3 signaling pathways on neuroinflammation in the α-synuclein A53T PD models. Results Our results showed that increased protein levels of NLRP3, ASC, and caspase-1 in the α-synuclein A53T PD models. P38 is activated by overexpression of α-synuclein A53T mutant, which inhibited the master transcriptional activator of autophagy TFEB. And we found that NLRP3 was degraded by chaperone-mediated autophagy (CMA) in microglial cells. Furthermore, p38-TFEB pathways inhibited CMA-mediated NLRP3 degradation in Parkinson's disease. Inhibition of p38 had a protective effect on Parkinson's disease model via suppressing the activation of NLRP3 inflammasome pathway. Moreover, both p38 inhibitor SB203580 and NLRP3 inhibitor MCC950 not only prevented neurodegeneration in vivo, but also alleviated movement impairment in α-synuclein A53T-tg mice model of Parkinson’s disease. Conclusion Our research reveals p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease, which could be a potential therapeutic strategy for PD. Graphical abstract p38-TFEB pathways promote microglia activation through inhibiting CMA-mediated NLRP3 degradation in Parkinson's disease. In this model, p38 activates NLRP3 inflammasome via inhibiting TFEB in microglia. TFEB signaling negatively regulates NLRP3 inflammasome through increasing LAMP2A expression, which binds to NLRP3 and promotes its degradation via chaperone-mediated autophagy (CMA). NLRP3-mediated microglial activation promotes the death of dopaminergic neurons.


2021 ◽  
Vol 12 ◽  
Author(s):  
Babita Singh ◽  
Shivani Pandey ◽  
Mohammad Rumman ◽  
Shashank Kumar ◽  
Prem Prakash Kushwaha ◽  
...  

Ethnopharmacological Relevance: Parkinson’s disease (PD) is characterized by progressive death of dopaminergic neurons. The presently used medicines only tackle the symptoms of PD, but none makes a dent on the processes that underpin the disease’s development. Herbal medicines have attracted considerable attention in recent years. Bacopa monnieri (L.) Wettst (Brahmi) has been used in Indian Ayurvedic medicine to enhance memory and intelligence. Herein, we assessed the neuroprotective role of Bacopa monnieri (L.) Wettst on Parkinson’s disease.Aim of the Study:Bacopa monnieri (L.) Wettst, a medicinal herb, is widely used as a brain tonic. We investigated the neuroprotective and neurorescue properties of Bacopa monnieri (L.) Wettst extract (BME) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice model of PD.Materials and Methods: The mice model of MPTP-induced PD is used in the study. In the neuroprotective (BME + MPTP) and neurorescue (MPTP + BME) experiments, the animals were administered 40 mg/kg body weight BME orally before and after MPTP administration, respectively. Effect of BME treatment was evaluated by accessing neurobehavioral parameters and levels of dopamine, glutathione, lipid peroxide, and nitrites. An in silico study was performed using AutoDock Tools 1.5.6 (ADT).Results: A significant recovery in behavioral parameters, dopamine level, glutathione level, lipid peroxides, and nitrite level was observed in BME-treated mice. Treatment with BME before or after MPTP administration has a protective effect on dopaminergic neurons, as evidenced by a significant decrease in GFAP immunostaining and expression of inducible nitric oxide synthase (iNOS) in the substantia nigra region; however, the degree of improvement was more prominent in mice receiving BME treatment before MPTP administration. Moreover, the in silico study revealed that the constituents of BM, including bacosides, bacopasides, and bacosaponins, can inactivate the enzyme monoamine oxidase B, thus preventing the breakdown of MPTP to MPP+.Conclusion: Our results showed that BME exerts both neuroprotective and neurorescue effects against MPTP-induced degeneration of the nigrostriatal dopaminergic neurons. Moreover, BME may slow down the disease progression and delay the onset of neurodegeneration in PD.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Luiz Eduardo Mateus Brandão ◽  
Diana Aline Morais Ferreira Nôga ◽  
Aline Lima Dierschnabel ◽  
Clarissa Loureiro das Chagas Campêlo ◽  
Ywlliane da Silva Rodrigues Meurer ◽  
...  

Passiflora cincinnata Masters is a Brazilian native species of passionflower. This genus is known in the American continent folk medicine for its diuretic and analgesic properties. Nevertheless, few studies investigated possible biological effects of P. cincinnata extracts. Further, evidence of antioxidant actions encourages the investigation of possible neuroprotective effects in animal models of neurodegenerative diseases. This study investigates the effect of the P. cincinnata ethanolic extract (PAS) on mice submitted to a progressive model of Parkinson’s disease (PD) induced by reserpine. Male (6-month-old) mice received reserpine (0.1 mg/kg, s.c.), every other day, for 40 days, with or without a concomitant treatment with daily injections of PAS (25 mg/kg, i.p.). Catalepsy, open field, oral movements, and plus-maze discriminative avoidance evaluations were performed across treatment, and immunohistochemistry for tyrosine hydroxylase was conducted at the end. The results showed that PAS treatment delayed the onset of motor impairments and prevented the occurrence of increased catalepsy behavior in the premotor phase. However, PAS administration did not modify reserpine-induced cognitive impairments. Moreover, PAS prevented the decrease in tyrosine hydroxylase immunostaining in the substantia nigra pars compacta (SNpc) induced by reserpine. Taken together, our results suggested that PAS exerted a neuroprotective effect in a progressive model of PD.


2020 ◽  
Author(s):  
Junqiang Yan ◽  
Hongxia Ma ◽  
Xiaoyi Lai ◽  
Jiannan Wu ◽  
Anran Liu ◽  
...  

Abstract Background Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's. The drugs currently used to treat PD cannot inhibit the development of PD, and long-term use produces severe drug resistance and adverse reaction. Artemisinin (ART) is an active ingredient of Artemisia annua and has a neuroprotective effect, but the mechanism is still unclear. This study was designed to investigate the neuroprotective effect of ART in MPP+-treated SH-SY5Y cells. Results There was no significant cytotoxicity when the ART concentration was under. 40μM. The 20μM ART for 24h could increase the cell viability by reducing oxidative stress and cell apoptosis in MPP+-treated SH-SY5Y cell. In addition, immunoblot and immunofluorescence results showed that MPP+ treatment increased the expression of Beclin1, LC3II/LC3I and decreased the expression of P62, while ART can reverse the changes caused by MPP+. Discussion More and more researches reported that ART and its derivates have neuroprotective effects through anti-oxidant and anti-apoptosis. we found that pre-treated cells with 20μM ART for 4h could significantly increase the viability in Parkinson's disease cell model. The oxidative stress and apoptosis were the main reason for the degeneration of dopaminergic neurons, while artemisinin can attenuate oxidative stress and apoptosis in MPP+-lesioned dopaminergic neurons. The levels of autophagy proteins LC3II/I, Beclin1 and P62 also showed that MPP+ increased the autophagy level, and pre-treatment with ART decreased the autophagy level, which may be the pathological mechanism for artemisinin to reduce oxidative stress damage and apoptosis. Conclusions These results indicate that ART exerts a positive effect on MPP+-treated SH-SY5Y cells in terms of anti-oxidative stress and anti-apoptosis. These effects may be related to autophagy. These findings contribute to a better understanding of the critical role of ART in PD treatment.


2020 ◽  
Author(s):  
Chenyu Zhang ◽  
Miao Zhao ◽  
Bingwei Wang ◽  
Zhijie Su ◽  
Bingbing Guo ◽  
...  

Abstract Background: Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNc), accompanied by chronic neuroinflammation, oxidative stress, and widespread accumulation of α-synuclein. Celastrol (Cel), a potent anti-inflammatory and anti-oxidative pentacyclic triterpene, has emerged as a neuroprotective agent. However, the mechanisms by which celastrol is neuroprotective in PD has not yet been elucidated. Methods: The MPTP and AAV-mediated human wild-type α-syn overexpression within SNc induced PD mouse models were employed in this study. By using multiple genetically modified mice (Nrf2-KO, NLRP3-KO and Caspase1-KO), we identified that celastrol effectively inhibited the NLRP3 inflammasome activation, mitigated motor deficits and nigrostriatal dopaminergic degeneration through Nrf2-NLRP3-Caspase1 pathway. Results: Here we show that celastrol protected against the loss of dopaminergic neurons, mitigated the neuroinflammation and motor deficits in both MPTP-induced PD mouse model and AAV-mediated human α-syn overexpression PD model. Whole-genome deep sequencing analysis reveals that Nrf2, NLRP3 and Caspase1 in SNc may be associated with the neuroprotective actions of celastrol in PD. Conclusions: These findings suggest that Nrf2-NLRP3-Caspase1 axis may be a key target of celastrol in PD treatment, and highlight the favorable properties linked to neuroprotection of celastrol, making celastrol as a promising disease-modifying agent for PD.


2022 ◽  
Author(s):  
Min Hyung Seo ◽  
Sujung Yeo

Abstract Parkinson’s disease (PD) is known as the second most common neurodegenerative disease, which is caused by destruction of dopaminergic neurons in the substantia nigra (SN) of the brain; however, the reason for the death of dopaminergic neurons remains unclear. An increase in α-synuclein (α-syn) is considered an important factor in the pathogenesis of PD. In the current study, we investigated the association between PD and serine/arginine-rich protein specific kinase 3 (Srpk3) in MPTP-induced parkinsonism mice model and in SH-SY5Y cells treated with MPP+. Srpk3 expression was significantly downregulated, while tyrosine hydroxylase (TH) decreased and α-synuclein (α-syn) increased after 4 weeks of MPTP intoxication treatment. Dopaminergic cell reduction and α-syn increase were demonstrated by inhibiting Srpk3 expression by siRNA in SH-SY5Y cells. Moreover, a decrease in Srpk3 expression upon siRNA treatment promoted dopaminergic cell reduction and α-syn increase in SH-SY5Y cells treated with MPP+. These results suggest that the decrease in Srpk3 expression due to Srpk3 siRNA caused both a decrease in TH and an increase in α-syn. This raises new possibilities for studying how Srpk3 controls dopaminergic cells and α-syn expression, which may be related to the pathogenesis of PD. Our results provide an avenue for understanding the role of Srpk3 during dopaminergic cell loss and α-syn increase in the SN. Furthermore, this study could support a therapeutic possibility for PD in that the maintenance of Srpk3 expression inhibited dopaminergic cell reduction.


2020 ◽  
Vol 21 ◽  
Author(s):  
Bairong Shen ◽  
Rajeev K. Singla ◽  
Tanya Agarwal ◽  
He Xuefei

: Parkinson’s disease is one of the most common adult-onset, a chronic disorder involving neurodegeneration, pro-gressively leading to deprivation of dopaminergic neurons in substantia nigra, causing a subsequent reduction of dopa-mine levels in the striatum resulting in tremor, myotonia, and dyskinesia. Genetics and environmental factors are believed to be responsible for the onset of Parkinson’s disease. The exact pathogenesis of Parkinson's dis-ease is quite complicated and the present anti-Parkinson's disease treatments appear to be clinically insufficient. Comprehensive researches have demonstrated the use of natural products such as ginseng, curcumin, ashwa-gandha, baicalein, etc. for the symptomatic treatment of this disease. The neuroprotective effects exhibited by these natural products are mainly due to their ability to increase dopamine levels in the striatum, manage oxidative stress, mitochondrial dysfunction, glutathione levels, clear the aggregation of α-synuclein, induce the autophagy and de-crease the pro-inflammatory cytokines and lipid peroxidation. This paper reviews various natural product studies conducted by the scientists to establish the role of natural products (both metabolite extracts as well as pure metabolites) as adjunctive neuroprotective agents.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 76
Author(s):  
Joanne Toh ◽  
Ling Ling Chua ◽  
Patrick Ho ◽  
Edwin Sandanaraj ◽  
Carol Tang ◽  
...  

Parkinson’s disease (PD) is an age-dependent neurodegenerative condition. Leucine-rich repeat kinase 2 (LRRK2) mutations are the most frequent cause of sporadic and autosomal dominant PD. The exact role of LRRK2 protective variants (R1398H, N551K) together with a pathogenic mutant (G2019S) in aging and neurodegeneration is unknown. We generated the following myc-tagged UAS-LRRK2 transgenic Drosophila: LRRK2 (WT), N551K, R1398H, G2019S single allele, and double-mutants (N551K/G2019S or R1398H/G2019S). The protective variants alone were able to suppress the phenotypic effects caused by the pathogenic LRRK2 mutation. Next, we conducted RNA-sequencing using mRNA isolated from dopaminergic neurons of these different groups of transgenic Drosophila. Using pathway enrichment analysis, we identified the top 10 modules (p < 0.05), with “LRRK2 in neurons in Parkinson’s disease” among the candidates. Further dissection of this pathway identified the most significantly modulated gene nodes such as eEF1A2, ACTB, eEF1A, and actin cytoskeleton reorganization. The induction of the pathway was successfully restored by the R1398H protective variant and R1398H-G2019S or N551K-G2019S rescue experiments. The oxidoreductase family of genes was also active in the pathogenic mutant and restored in protective and rescue variants. In summary, we provide in vivo evidence supporting the neuroprotective effects of LRRK2 variants. RNA sequencing of dopaminergic neurons identified upregulation of specific gene pathways in the Drosophila carrying the pathogenic variant, and this was restored in the rescue phenotypes. Using protective gene variants, our study identifies potential new targets and provides proof of principle of a new therapeutic approach that will further our understanding of aging and neurodegeneration in PD.


Sign in / Sign up

Export Citation Format

Share Document