Instant rice made from white and pigmented giant embryonic rice reduces lipid levels and body weight in high fat diet-fed mice

2016 ◽  
Vol 10 (6) ◽  
pp. 692-700 ◽  
Author(s):  
Soo Im Chung ◽  
Catherine W. Rico ◽  
Sang Chul Lee ◽  
Mi Young Kang
Author(s):  
Shailendra Mishra ◽  
Quazi Shahir Ahmed ◽  
Kauser Sayedda

Background: Dyslipidaemia is an important risk factor for development of macrovascular complications in type 2 diabetes mellitus. Ocimum sanctum (OS) and metformin have shown to have antihyperlipidaemic effects. The present study was undertaken  to evaluate the effects of  OS and Metformin on body weight & plasma lipid  levels of high fat diet fed diabetic ratsMethods: Total of 30 male wistar  rats (100-150gm) were obtained. Animals were fed with a high fat diet throughout the study (6 weeks). Diabetes was induced by using single intra-peritoneal injection of Streptozotocin 50mg/kg at the end of 4 weeks.  Diabetic rats were divided into groups of 6 each and treated as follows: Group 1- Diabetic control, was given vehicle orally. Group 2- O.S. ethanolic extract 100mg/kg body weight orally for 14 days. Group 3- O.S. ethanolic extract  200mg/kg body weight orally for 14 days. Group 4-  Metformin 100mg/day for 14 daysResults: At the end of 4 weeks, body weight of rats were significantly increased (p <0.05). Maximum weight gain was seen in control group whereas weight gain was least in O.S. 200mg/kg group (p >0.05). Decrease in body weight was seen in metformin group. Abdominal circumference of rats also showed similar pattern (p >0.05).  OS 200 caused significant reduction in serum LDL levels (p <0.05) and significant rise of serum HDL levels (p <0.05) as compared to control group. Metformin also favourably affected the lipid profile and its effects were not significantly different from effects of OS 200 (p> 0.05).Conclusions: Present study revealed that Ocimum Sanctum caused significant reduction in serum lipid levels in high fat diet fed diabetic rats. Metformin  also exhibited antihyperlipidaemic activity. So, it is concluded that OS or metformin alone or in combination  could be a novel adjunct to diet and life style modification for the management of dyslipidaemia in type 2 diabetes.  Further studies are required to confirm the antidyslipidaemic activities of individual phytoconstituents of Ocimum sanctum.


2020 ◽  
Vol 40 (1) ◽  
pp. 60-70
Author(s):  
P Bansal ◽  
U Bhandari ◽  
K Sharma ◽  
P Arya

The present study was designed to investigate the effect of embelin in metabolic endotoxemia (ME) mediated inflammation and associated obesity in high fat diet (HFD)-fed C57BL/6 mice. The molecular docking of embelin confirms its binding with the toll-like receptor-4 (TLR-4). In vivo study, mice were treated with HFD for 8 weeks to induce ME mediated inflammation and associated obesity. Further, mice were treated with embelin (50 and 100 mg/kg/day, p.o.) and orlistat (10 mg/kg/day, p.o.) from 5th to 8th week along with HFD to improve associated changes. After 8 weeks, mice were euthanized and assessed for body weight, body mass index (BMI), fat pad weights (mesenteric, retroperitoneal, and epididymal), intestinal permeability, TLR-4, tumor necrosis factor-α, interleukin-6, lipopolysaccharide, and serum lipid levels followed by histopathological analysis of liver and adipose tissues. Embelin significantly decreased the body weight, BMI, serum lipid levels, ME, and inflammation manifested by above parameters. Further, results of histopathological study showed that embelin restored the vacuolization, inflammation, one side shifting of nucleus in liver tissue, and decreased adipocyte cells size in adipose tissue in HFD-fed mice. Thus, our findings provide the strong evidence first time that embelin could modulate ME, mediate inflammation, and consequently reduce body weight gain, BMI, and serum lipid levels in HFD-fed mice.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 920-920
Author(s):  
Sanjay Pandey Diksha Joshi ◽  
Saurabh Singh ◽  
Sushma Ray ◽  
Anant Narayan Bhatt ◽  
K Natarajan ◽  
...  

Abstract Obesity is a major risk factor for type 2 diabetes, NAFLD, chronic diseases and cancer. Insulin resistance, oxidative stress, high ectopic lipid levels and meta-inflammation are the mechanisms proposed to play a leading role in the morbidity associated with obesity. Energy restriction mimetics (ERMAs) has also been shown earlier to reduce the scale and the severity of these disorders by mimicking the physiological effects of the Energy Restriction. In present study we propose that the use of 2-DG as ERMA can be effective in regulating the High Fat Diet (HFD) induced obesity. Effect of 2-DG (0.4% w/v in drinking water) on the HFD and Insulin Resistance (IR). HFD induced change in body weight, adipose tissue mass, and ectopic lipid levels was assessed as the measure of obesity.IR and glucose levels were also estimated to evaluate the effect of 2-DG on the insulin sensitivity in HFD mice. 2-DG significantly altered HFD induced increase in the mice body weight, epididymal White Adipose Tissue (WAT) and liver weight. 2-DG fed mice also showed reduced lipid levels in serum and liver. Furthermore, 2-DG also reduced the oxidative damage in the liver with concomitant increase in enzymatic (SOD and Catalase) and non-enzymatic (reduced Glutathione) antioxidant levels. 2-DG fed mice also showed reduced levels of Leptin, IL-6 and TGF-β which are early drivers of the etiology of the metabolic diseases. Our results suggest that 2-DG as ERMA can prevent obesity and etiology of associated disorders. However, more relevant models are needed to further strengthen these observation


2014 ◽  
Vol 22 (1) ◽  
pp. 123-139 ◽  
Author(s):  
Young-Sik Yoon ◽  
Seon-Oh Keum ◽  
Se-Won Lee ◽  
Il-Hyun Kim ◽  
Ha-Il Lee ◽  
...  

2020 ◽  
Author(s):  
Long Cheng ◽  
Shuofeng Zhang ◽  
Fei Shang ◽  
Jianning Sun ◽  
Shifen Dong

Abstract Background: Obesity has become a worldwide health threat related to type 2 diabetes, hypertension, cardiovascular disease, etc. Activating brown adipocytes and inducing browning of white adipocytes has been proposed as a potential molecular target for obesity treatment. In the present study, we investigated the effects of emodin on browning in mice with high-fat diet (HFD) and explore its underlying pharmacological mechanisms. Methods: The positive effects of emodin (40, 80 mg/kg/day, i.g. for 6 weeks) on lipid metabolism were evaluated in mice model of hyperlipidemia. Hyperlipidemia mice were induced by high-fat diet (60% of kilocalories from fat, 5.24 Kcal/kg) for 8 weeks. Body weight and food intake were monitored every week. After 6 weeks of treatment, fasting blood glucose, oral glucose tolerance, Lee's index, the ratio of fat weight to body weight, blood lipids, and adipose tissues morphology were assayed. Then uncoupling protein 1 (UCP1), CD36, fatty acid transporter 4 (FATP4), peroxisome proliferator activated receptor α (PPARα) and prohibitin (PHB) protein of subcutaneous white adipose tissue (scWAT) and brown adipose tissue (BAT) were analyzed. In addition, the lipid metabolites in adipose tissues were analyzed by ultra-high- performance liquid chromatography with electrospray ionization tandem mass spectrometry.Results: Emodin treatment decreased body weight gain, fasting blood glucose, Lee's index, the ratio of scWAT weight to body weight, and the levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c) and Leptin in serum, and increased serum adiponectin content and improved glucose tolerance. Furthermore, emodin enhanced the expression of UCP1, CD36, FATP4, PPARα and PHB protein in scWAT and BAT. Meanwhile, emodin can significantly up-regulated lipid levels in scWAT of mice fed with HFD such as PC(O-18:2/22:5), PE(O-18:1/18:2), PE(O-18:2/20:4), PE(O-20:1/20:5), Cer(d14:1/20:0) and SM(d18:0/23:0), and reduced the lipid levels such as PC(O-18:0/20:0), PE(O-18:2/22:2), PE(O-18:0/22:5). In addition, emodin significantly up-regulate lipid levels in BAT of mice fed with HFD such as PC(14:0/16:0), PC(16:0/16:1), PC(16:1/16:1), PC(15:1/18:3), PC(18:0/20:0), LysoPC(20:0), LysoPC(22:0) and LysoPC(22:1), and reduced the lipid levels PC(12:0/20:4) and PC(17:0/22:5). Conclusions: These results indicated that hyperlipidemia could be alleviated by treatment of emodin via promoting browning of white adipose tissue. In addition, the disturbance of some small lipid metabolites in adipose also could be reversed by emodin.


2014 ◽  
Vol 46 (4) ◽  
pp. 477-482 ◽  
Author(s):  
Sung-Soo Kim ◽  
Ki-Seung Seong ◽  
Ok-Hwan Lee ◽  
Jong Seok Lee ◽  
Young-Tack Lee ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 464 ◽  
Author(s):  
Bright Asare-Bediako ◽  
Sunil Noothi ◽  
Sergio Li Calzi ◽  
Baskaran Athmanathan ◽  
Cristiano Vieira ◽  
...  

We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes.


Sign in / Sign up

Export Citation Format

Share Document