scholarly journals Dietary Administration of 2-Deoxy-D-Glucose Reduces High Fat Diet Induced Obesity and meta-inflammation in Mice

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 920-920
Author(s):  
Sanjay Pandey Diksha Joshi ◽  
Saurabh Singh ◽  
Sushma Ray ◽  
Anant Narayan Bhatt ◽  
K Natarajan ◽  
...  

Abstract Obesity is a major risk factor for type 2 diabetes, NAFLD, chronic diseases and cancer. Insulin resistance, oxidative stress, high ectopic lipid levels and meta-inflammation are the mechanisms proposed to play a leading role in the morbidity associated with obesity. Energy restriction mimetics (ERMAs) has also been shown earlier to reduce the scale and the severity of these disorders by mimicking the physiological effects of the Energy Restriction. In present study we propose that the use of 2-DG as ERMA can be effective in regulating the High Fat Diet (HFD) induced obesity. Effect of 2-DG (0.4% w/v in drinking water) on the HFD and Insulin Resistance (IR). HFD induced change in body weight, adipose tissue mass, and ectopic lipid levels was assessed as the measure of obesity.IR and glucose levels were also estimated to evaluate the effect of 2-DG on the insulin sensitivity in HFD mice. 2-DG significantly altered HFD induced increase in the mice body weight, epididymal White Adipose Tissue (WAT) and liver weight. 2-DG fed mice also showed reduced lipid levels in serum and liver. Furthermore, 2-DG also reduced the oxidative damage in the liver with concomitant increase in enzymatic (SOD and Catalase) and non-enzymatic (reduced Glutathione) antioxidant levels. 2-DG fed mice also showed reduced levels of Leptin, IL-6 and TGF-β which are early drivers of the etiology of the metabolic diseases. Our results suggest that 2-DG as ERMA can prevent obesity and etiology of associated disorders. However, more relevant models are needed to further strengthen these observation

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Rieko Takanabe ◽  
Koh Ono ◽  
Tomohide Takaya ◽  
Takahiro Horie ◽  
Hiromichi Wada ◽  
...  

Obesity is the result of an expansion and increase in the number of individual adipocytes. Since changes in gene expression during adipocyte differentiation and hypertrophy are closely associated with insulin resistance and cardiovascular diseases, further insight into the molecular basis of obesity is needed to better understand obesity-associated diseases. MicroRNAs (miRNAs) are approximately 17–24nt single stranded RNA, that post-transcriptionally regulate gene expression. MiRNAs control cell growth, differentiation and metabolism, and may be also involved in pathogenesis and pathophysiology of diseases. It has been proposed that miR-143 plays a role in the differentiation of preadipocytes into mature adipocytes in culture. However, regulated expression of miR-143 in the adult adipose tissue during the development of obesity in vivo is unknown. To solve this problem, C57BL/6 mice were fed with either high-fat diet (HFD) or normal chow (NC). Eight weeks later, severe insulin resistance was observed in mice on HFD. Body weight increased by 35% and the mesenteric fat weight increased by 3.3-fold in HFD mice compared with NC mice. We measured expression levels of miR-143 in the mesenteric fat tissue by real-time PCR and normalized with those of 5S ribosomal RNA. Expression of miR-143 in the mesenteric fat was significantly up-regulated (3.3-fold, p<0.05) in HFD mice compared to NC mice. MiR-143 expression levels were positively correlated with body weight (R=0.577, p=0.0011) and the mesenteric fat weight (R=0.608, p=0.0005). We also measured expression levels in the mesenteric fat of PPARγ and AP2, whose expression are deeply involved in the development of obesity, insulin resistant and arteriosclerosis. The expression levels of miR-143 were closely correlated with those of PPARγ (R=0.600, p=0.0040) and AP2 (R=0.630, p=0.0022). These findings provide the first evidence for up-regulated expression of miR-143 in the mesenteric fat of HFD-induced obese mice, which might contribute to regulated expression of genes involved in the pathophysiology of obesity.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Jun Muratsu ◽  
Yoshiaki Taniyama ◽  
Fumihiro Sanada ◽  
Atsuyuki Morishima ◽  
Katsuhiko Sakaguchi ◽  
...  

Abstract Background and Aims Obesity and its associated chronic inflammation in adipose tissue initiate insulin resistance, which is related to several pathologies including hypertension and atherosclerosis. Previous reports demonstrated that circulating hepatocyte growth factor (HGF) level was associated with obesity and type 2 diabetes. However, its precise role in obesity and related-pathology is unclear. Method In this experiment, cardiac-specific over-expression of human HGF in mice (HGF-Tg mice) which showed 4-5 times higher serum HGF levels than wild-type mice were used. We chose cardiac specific HGF overexpression, as other strain of HGF transgenic mice such as liver and kidney specific HGF overexpression mice develop cancer and cystic diseases, which are rare in the heart. In the present study, using HGF-Tg mice and anti-HGF neutralizing antibody (HGF-Ab), we explored the role of HGF in obese and insulin resistance induced by high fat diet (HFD) for 14 weeks (200 or 400ug/week). Results With normal chow diet (ND), there were no significant changes in body weight between WT and HGF-Tg mice. While body weight in wild-type mice fed with HFD for 14 weeks was significantly increased accompanied with insulin resistance, HGF-Tg mice prevented body weight gain and insulin resistance. Insulin resistance in obesity arises from the combination of altered functions of insulin target cells (e.g., liver, skeletal muscle, and adipose tissue) and the accumulation of macrophages that secrete pro-inflammatory mediators in adipose tissue. The accumulation of macrophages and elevated levels of inflammatory mediators in adipose tissue were significantly inhibited in HGF-Tg mice as compared to wild-type mice. In the gWAT, the mRNA levels of the mature macrophage marker F4/80, the chemoattractants, MCP-1 and CXCL2, and the inflammatory cytokines, such as TNF-α and iNOS, were significantly increased in WT mice fed with HFD. However, these levels were markedly reduced in HGF-Tg mice fed with HFD. Additionally, activation of Akt by insulin administration was significantly reduced in the gWAT SM, and liver by HFD; however, this activation was restored in HGF-Tg mice. Moreover, insulin-induced Akt signaling was decreased in HGF-Ab groups as compared to saline group under HFD condition. Importantly, HFD significantly increased the level of HGF mRNA by approximately 2 fold in gWAT, SM, and liver without changing cMet expression. All together, these data indicate that the HGF as one of the systemic gWAT, SM, and liver-derived growth factor plays a role in compensatory mechanism against insulin-resistance through the at least anti-inflammatory effect in adipose tissue. The HFD-induced obesity in wild-type mice treated with HGF-neutralizing antibody showed an exacerbated response to the glucose tolerance test. Conclusion HGF suppresses inflammation in adipose tissue induced by a high-fat diet, and as a result improves systemic insulin resistance. These gain-of-function and loss-of-function studies demonstrated that the elevated HGF level induced by HFD have protective role against obesity and insulin resistance.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Yunjung Baek ◽  
Mi Nam Lee ◽  
Dayong Wu ◽  
Munkyong Pae

Abstract Objectives Previously, we showed that loss of ovarian function in mice fed high-fat diet exacerbated insulin resistance and adipose tissue inflammation. In the current study, we tested whether consumption of luteolin, an anti-inflammatory flavonoid, could mitigate adipose tissue inflammation and insulin resistance in obese ovariectomized mice. Methods Nine-week-old ovariectomized C57BL/6 mice were fed a low-fat diet (LFD), high-fat diet (HFD), or HFD supplemented with 0.005% luteolin (HFD + L) for 16 weeks. The anti-inflammatory drug salicylate was used as a positive control. Fasting blood glucose, insulin, and insulin resistance index HOMA-IR were measured every 4 weeks. Adipose tissue and spleen were characterized for tissue inflammation by real-time PCR and immune cell populations by flow cytometry after 16 weeks of feeding. Results HFD resulted in more body weight gain than LFD in ovariectomized mice and supplementing HFD with 0.005% luteolin did not affect the body weight gain. In addition, HFD elicited a significant elevation in fat mass, which were comparable between HFD and HFD + L groups. However, luteolin supplementation resulted in a significant decrease in CD11c+ macrophages in gonadal adipose tissue, as well as a trend of decrease in macrophage infiltration. Luteolin supplementation also significantly decreased mRNA expression of inflammatory and M1 markers MCP-1, CD11c, TNF-a, and IL-6, while maintaining expression of M2 marker MGL1. We further found that luteolin treatment protected mice from insulin resistance induced by HFD consumption; this improved insulin resistance was correlated with reductions in CD11c+ adipose tissue macrophages. Conclusions Our findings indicate that dietary luteolin supplementation attenuates adipose tissue inflammation and insulin resistance found in mice with loss of ovarian function coupled with a HFD intake, and this effect may be partly mediated through suppressing M1-like polarization of macrophages in adipose tissue. These results have clinical implication in implementing dietary intervention for prevention of metabolic syndrome associated with postmenopause and obesity. Funding Sources Supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2018R1A1A1A05078886).


2017 ◽  
Vol 45 (04) ◽  
pp. 813-832 ◽  
Author(s):  
Hyeon-Jeong Kim ◽  
Sanghwa Kim ◽  
Ah Young Lee ◽  
Yoonjeong Jang ◽  
Orkhonselenge Davaadamdin ◽  
...  

This study used an integrated approach to investigate the effects of Gymnema sylvestre (GS) extract as a functional dietary supplement with a high-fat diet. This approach examined insulin resistance, the dysfunction of adipose tissue, and liver steatosis. Male C57BL/6J mice were fed a normal chow or high-fat diet (HFD) for the acute and chronic study, in addition to GS in different doses (100, 250 and 500[Formula: see text]mg/kg body weight). Their body composition changes, serum lipid and glucose parameters, adipose and liver tissue histology, and gene expression were measured. It was found that GS significantly suppressed the increase of body weight, serum levels of lipid, insulin and leptin, and adipose tissue, and liver inflammation. GS also demonstrated hypoglycemic effects due to the amylase inhibition activity. Our results support the existence of a relationship between the HFD induced insulin resistance, adipose dysfunction and liver steatosis. In conclusion, GS works as a functional dietary supplement with preventative effects against metabolic disorder.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Young-Sil Yoon ◽  
Weiyi Liu ◽  
Sam Van de Velde ◽  
Shigenobu Matsumura ◽  
Ezra Wiater ◽  
...  

AbstractObesity is a major risk factor for the development of type II diabetes. Increases in adipose tissue mass trigger insulin resistance via the release of pro-inflammatory cytokines from adipocytes and macrophages. CREB and the CRTC coactivators have been found to promote insulin resistance in obesity, although the mechanism is unclear. Here we show that high fat diet feeding activates the CREB/CRTC pathway in adipocytes by decreasing the expression of SIK2, a Ser/Thr kinase that phosphorylates and inhibits CRTCs. SIK2 levels are regulated by the adipogenic factor C/EBPα, whose expression is reduced in obesity. Exposure to PPARγ agonist rescues C/EBPα expression and restores SIK2 levels. CRTC2/3 promote insulin resistance via induction of the chemokines CXCL1/2. Knockout of CRTC2/3 in adipocytes reduces CXCL1/2 expression and improves insulin sensitivity. As administration of CXCL1/2 reverses salutary effects of CRTC2/3 depletion, our results demonstrate the importance of the CREB/CRTC pathway in modulating adipose tissue function.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Janine Krüger ◽  
Markus Dagnell ◽  
Philipp Stawowy ◽  
Evren Caglayan ◽  
Arne Östman ◽  
...  

Background: Insulin resistance plays a crucial role in the development of type 2 diabetes, and exerts great impact on vascular inflammation and remodeling. At the molecular level a post-insulin receptor (IR) defect in insulin signaling has been suggested to contribute to insulin resistance. IR signaling is antagonized and tightly controlled by protein tyrosine phosphatases (PTPs). The precise role of PTPs in insulin resistance, however, has not been explored. Results: Male C57BL/6J mice were fed a high-fat diet (HFD, 60% kcal from fat) to induce insulin resistance, or a low-fat diet (LFD, 10% kcal from fat) for 10 weeks. Afterwards, HFD mice were treated with PTP-inhibitors for additional 6 weeks. Mice under HFD exhibited a significant increase in body weight as well as decreased respiratory quotient and adiponectin levels, and were characterized by impaired insulin- and glucose tolerance. Organ-based gene expression analyses in insulin-resistant mice demonstrated upregulation of SHP-1, PTP1B, LAR, and DEP-1 in insulin-sensitive organs. SHP-1 was further explored in vitro. Insulin stimulation in murine liver cells induced site-selective hyper-phosphorylation at IR tyrosine-sites Y1158, and Y1361 after inhibition of SHP-1. Furthermore, SHP-1 impairment time-dependently enhanced insulin-induced Akt- and Erk-phosphorylation, and resulted in elevated glucose uptake in skeletal muscle cells. Administration of a SHP-1 inhibitor (Sodium Stibogluconate) and a brought pan-PTP inhibitor (BMOV) in HFD mice led to improvement of both insulin- and glucose tolerance. In accordance, PTP-activity was significantly impaired in epididymal fat, skeletal muscle, and liver under BMOV treatment, being confirmed by reduced ex vivo dephosphorylation of a radioactive labelled peptide (AEEEIYGEFEAKKKK). Finally, BMOV- and SHP-1 treatment also resulted in reduced body weight. Conclusions: IR-antagonizing PTPs were organ-specifically regulated in insulin resistance. The results indicate a central role of PTPs and, in particular, of SHP-1 as endogenous antagonists of the IR. Taken together targeting PTPs led to beneficial effects in insulin resistance, and may thus improve metabolic diseases as well as cardiovascular morbidity and mortality.


2011 ◽  
Vol 301 (5) ◽  
pp. E825-E835 ◽  
Author(s):  
Lucy S. Jun ◽  
C. Parker Siddall ◽  
Evan D. Rosen

Adipose tissue controls energy homeostasis and systemic insulin sensitivity through the elaboration of a series of cytokines and hormones, collectively termed “adipokines.” We and others have identified Lcn2 as a novel adipokine, but its exact role in obesity-induced insulin resistance remains controversial. The aim of this study was to examine the metabolic phenotype of Lcn2−/− mice to clarify the role of Lcn2 in metabolism. Male and female Lcn2−/− and wild-type (WT) littermates were placed on either chow or high-fat diet (HFD) to characterize their metabolic phenotype. Studies included body weight and body composition, glucose and insulin tolerance tests, and adipokine expression studies in serum and in white adipose tissue (WAT). Neither chow nor HFD cohorts showed any differences in body weight or body composition. Chow-fed Lcn2−/− mice did not exhibit any difference in glucose homeostasis compared with WT mice. Fasting serum glucose levels were lower in the chow-fed Lcn2−/− mice, but this finding was not seen in the HFD cohort. Serum adiponectin, leptin, resistin, and RBP4 levels were not different between WT and Lcn2−/− on chow diet. HFD-fed male Lcn2−/− mice did display a small improvement in glucose tolerance, but no difference in insulin sensitivity was seen in either male or female Lcn2−/− mice on HFD. We conclude that the global ablation of Lcn2 has a minimal effect on obesity-associated glucose intolerance but does not appear to affect either age- or obesity-mediated insulin resistance in vivo.


2009 ◽  
Vol 297 (1) ◽  
pp. E184-E193 ◽  
Author(s):  
Josep Mercader ◽  
Joan Ribot ◽  
Incoronata Murano ◽  
Søren Feddersen ◽  
Saverio Cinti ◽  
...  

Brown adipose tissue activity dissipates energy as heat, and there is evidence that lack of the retinoblastoma protein (pRb) may favor the development of the brown adipocyte phenotype in adipose cells. In this work we assessed the impact of germ line haploinsufficiency of the pRb gene (Rb) on the response to high-fat diet feeding in mice. Rb+/− mice had body weight and adiposity indistinguishable from that of wild-type (Rb+/+) littermates when maintained on a standard diet, yet they gained less body weight and body fat after long-term high-fat diet feeding coupled with reduced feed efficiency and increased rectal temperature. Rb haploinsufficiency ameliorated insulin resistance and hepatosteatosis after high-fat diet in male mice, in which these disturbances were more marked than in females. Compared with wild-type littermates, Rb+/− mice fed a high-fat diet displayed higher expression of peroxisome proliferator-activated receptor (PPAR)γ as well as of genes involved in mitochondrial function, cAMP sensitivity, brown adipocyte determination, and tissue vascularization in white adipose tissue depots. Furthermore, Rb+/− mice exhibited signs of enhanced activation of brown adipose tissue and higher expression levels of PPARα in liver and of PPARδ in skeletal muscle, suggestive of an increased capability for fatty acid oxidation in these tissues. These findings support a role for pRb in modulating whole body energy metabolism and the plasticity of the adipose tissues in vivo and constitute first evidence that partial deficiency in the Rb gene protects against the development of obesity and associated metabolic disturbances.


2019 ◽  
Author(s):  
Lisa Y. Beppu ◽  
Xiaoyao Qu ◽  
Giovanni J. Marrero ◽  
Allen N. Fooks ◽  
Adolfo B. Frias ◽  
...  

ABSTRACTCrosstalk between the immune system and adipocytes is critical for maintaining tissue homeostasis and regulating chronic systemic inflammation during diet-induced obesity (DIO). How visceral adipose tissue resident regulatory T cells (aTregs) signal to adipocytes in the visceral adipose tissue (VAT) is not understood. Here we show that Treg-specific ablation of the transcriptional regulator Blimp-1 resulted in increased insulin sensitivity, decreased body weight and increased Ucp-1 in adipocytes in high fat diet (HFD)-fed mice. Mechanistically, we demonstrate that Blimp-1 drives IL-10 production in Tregs, thus suppressing beiging and energy expenditure in adipocytes. Moreover, IL-10 mRNA expression positively correlated with increasing body weight in humans. These findings reveal a surprising relationship between aTregs and adipocytes in promoting insulin resistance during excessive caloric intake, placing Blimp-1-regulated IL-10 expression by aTregs at a critical juncture in the development of obesity and its associated comorbidities in mice and humans.SUMMARYHere we show that ablation of Blimp-1 in adipose tissue resident Tregs (aTregs) leads to decreased IL-10 production, resulting in increased Ucp-1 expression and beiging by adipocytes and protection from diet-induced obesity and insulin resistance.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2182
Author(s):  
Yung-Tsung Chen ◽  
Ai-Hua Hsu ◽  
Shiou-Yun Chiou ◽  
Yu-Chun Lin ◽  
Jin-Seng Lin

Consumption of different types of high-calorie foods leads to the development of various metabolic disorders. However, the effects of multi-strain probiotics on different types of diet-induced obesity and intestinal dysbiosis remain unclear. In this study, mice were fed a control diet, high-fat diet (HFD; 60% kcal fat and 20% kcal carbohydrate), or western diet (WD; 40% kcal fat and 43% kcal carbohydrate) and administered with multi-strain AB-Kefir containing six strains of lactic acid bacteria and a Bifidobacterium strain, at 109 CFU per mouse for 10 weeks. Results demonstrated that AB-Kefir reduced body weight gain, glucose intolerance, and hepatic steatosis with a minor influence on gut microbiota composition in HFD-fed mice, but not in WD-fed mice. In addition, AB-Kefir significantly reduced the weight and size of adipose tissues by regulating the expression of CD36, Igf1, and Pgc1 in HFD-fed mice. Although AB-Kefir did not reduce the volume of white adipose tissue, it markedly regulated CD36, Dgat1 and Mogat1 mRNA expression. Moreover, the abundance of Eubacterium_coprostanoligenes_group and Ruminiclostridium significantly correlated with changes in body weight, liver weight, and fasting glucose in test mice. Overall, this study provides important evidence to understand the interactions between probiotics, gut microbiota, and diet in obesity treatment.


Sign in / Sign up

Export Citation Format

Share Document