scholarly journals In Vitro Antibacterial Activity, Gas Chromatography–Mass Spectrometry Analysis of Woodfordia fruticosa Kurz. Leaf Extract and Host Toxicity Testing With In Vitro Cultured Lymphocytes From Human Umbilical Cord Blood

2014 ◽  
Vol 5 (5) ◽  
pp. 298-312 ◽  
Author(s):  
Debasmita Dubey ◽  
Rajashree Patnaik ◽  
Goutam Ghosh ◽  
Rabindra N. Padhy
Author(s):  
Prabu P ◽  
Edayadulla N ◽  
Anand S

Objective: The objective of the present study is to determine the possible phytoconstituents identified by gas chromatography and mass spectrometry (GC-MS) analysis of an ethanolic leaves extract of Elettaria cardamomum L. Maton.Methods: The extraction of E. cardamomum was done by cold solvent extraction system at room temperature. GC-MS analysis of lyophilized ethanolic leaves extract of plant samples was carried out by GC-MS-GC Clarus 500 Perkin Elmer. Results: In E. cardamomum, 21 phytochemicals were identified among which retinal, 9-cis-showed the highest area (44.86%) and benzeneethanamine, α-methyl- showed the lowest area (0.12%). The major compounds identified were retinal, 9-cis-, 1-heptatriacotanol, phytol, n-hexadecanoic acid, naphthalene,decahydro-1,1,4atrimethyl-6-methylene-5-(3-methyl-2-4-pentadienyl)-[4aS-(4aα,5α,8aα)]-, β-pinene, 2H-pytan-3-ol,6- ethenyltetrahydro-2,2,6-trimethyl-and cyclopropane, trimethanol, (2-methyl-1-propanylidene).Conclusion: GC-MS analysis revealed the presence of hydrocarbon alkane, ester, terpenes, phenolic compounds, steroids, and fatty acids in E. cardamomum. These active phytoconstituents contribute to the medicinal efficacy of the plant, and the plant can be used for the sourcing of these compounds.


Author(s):  
Prabu P ◽  
Edayadulla N ◽  
Anand S

Objective: The objective of the present study is to determine the possible phytoconstituents identified by gas chromatography and mass spectrometry (GC-MS) analysis of an ethanolic leaves extract of Elettaria cardamomum L. Maton.Methods: The extraction of E. cardamomum was done by cold solvent extraction system at room temperature. GC-MS analysis of lyophilized ethanolic leaves extract of plant samples was carried out by GC-MS-GC Clarus 500 Perkin Elmer. Results: In E. cardamomum, 21 phytochemicals were identified among which retinal, 9-cis-showed the highest area (44.86%) and benzeneethanamine, α-methyl- showed the lowest area (0.12%). The major compounds identified were retinal, 9-cis-, 1-heptatriacotanol, phytol, n-hexadecanoic acid, naphthalene,decahydro-1,1,4atrimethyl-6-methylene-5-(3-methyl-2-4-pentadienyl)-[4aS-(4aα,5α,8aα)]-, β-pinene, 2H-pytan-3-ol,6- ethenyltetrahydro-2,2,6-trimethyl-and cyclopropane, trimethanol, (2-methyl-1-propanylidene).Conclusion: GC-MS analysis revealed the presence of hydrocarbon alkane, ester, terpenes, phenolic compounds, steroids, and fatty acids in E. cardamomum. These active phytoconstituents contribute to the medicinal efficacy of the plant, and the plant can be used for the sourcing of these compounds.


Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 79 ◽  
Author(s):  
María Ibáñez ◽  
María Blázquez

The chemical composition of winter savory, peppermint, and anise essential oils, and in vitro and in vivo phytotoxic activity against weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli) and food crops (maize, rice, and tomato), have been studied. Sixty-four compounds accounting for between 97.67–99.66% of the total essential oils were identified by Gas Chromatography-Mass Spectrometry analysis. Winter savory with carvacrol (43.34%) and thymol (23.20%) as the main compounds produced a total inhibitory effect against the seed germination of tested weed. Menthol (48.23%), menthone (23.33%), and iso-menthone (16.33%) from peppermint only showed total seed germination inhibition on L. multiflorum, whereas no significant effects were observed with trans-anethole (99.46%) from anise at all concentrations (0.125–1 µL/mL). Low doses of peppermint essential oil could be used as a sustainable alternative to synthetic agrochemicals to control L. multiflorum. The results corroborate that in vivo assays with a commercial emulsifiable concentrate need higher doses of the essential oils to reproduce previous in vitro trials. The higher in vivo phytotoxicity of winter savory essential oil constitutes an eco-friendly and less pernicious alternative to weed control. It is possible to achieve a greater in vivo phytotoxicity if less active essential oil like peppermint is included with other active excipients.


Author(s):  
Devakumar Devakumar Joseph ◽  
Keerthana Veerasamy ◽  
Sudha Siva Singaram

ABSTRACTObjective: The aim of this study was to investigate the presence of bioactive compounds in the methanolic leaf extract of Syzygium jambos.Methods: Collected leaves were shade dried and made into fine powder, extracted with methanol, and the methanolic extract was prepared andanalyzed for the presence of bioactive compounds by gas chromatography-mass spectrometry (GC-MS). The mass spectrum of the chromatographywas matched with NIST and WILEY Libraries.Results: The GC-MS analysis revealed the presence of 45 active compounds in the extract. From the GC-MS investigation, 1-Deoxy-d-mannitol3-methyl-2-methylsulfanyl-5-nitro-6-pyridin-4-ylpyrimidin-4-one, 3-Pentadecylphenol, 2-biphenylene carboxylic acid, Quinoline-3-carboxylic acid,and Stigmast-5-en-3-ol are important phytoconstituents which have antipyretic and antiparasitic activities.Conclusion: The present investigation revealed preliminary information on phytocompounds presented in S. jambos leaf extract which is very usefulfor the human community.Keywords: Syzygium jambos, Gas chromatography-mass spectrometry analysis, 1-Deoxy-d-mannitol, Phytoconstituents, Methanolic leaf extract.


Author(s):  
ARCHANA ELAMKULAM RAVINDRAN ◽  
JOHN ERNEST THOPPIL

Objective: The present study aims to analyze the potential of Aglaia edulis Roxb. leaf extract to induce cytological aberrations in Allium cepa root meristem and to determine the phytoconstituents in the extract. Methods: Cytotoxicity evaluation of the leaf methanolic extract was done using Allium cepa assay using various concentrations. Volatile phytoconstituents in the extract were determined using gas chromatography–mass spectrometry analysis. Results: Considerable number of cytomictic cells along with other aberrations was observed. The occurrence of cytomixis was found to be dose dependent where it ranged from 6.58±0.35 to 29.45±0.45. The percentage of cytomictic cells among the total aberrant cells was observed between 35.19±1.67 and 77.39±1.39. The phytochemical analysis of the plant extract revealed the presence of active secondary metabolites. Conclusion: The synergistic action of the active compounds might have triggered the phenomenon of cytomixis which, in turn, could be exploited for the production of polyploids.


Author(s):  
Krishnavignesh L Krishnavignesh ◽  
Mahalakshmipriya A ◽  
Ramesh M

  Objective: Continued resistance toward the antibiotics urges us to explore newer antibiotics. Plants are being the safer source of antibiotics with lesser or no side effects. This study was designed to study the presence of phytochemical constituents and antibacterial activity of leaf and flower extracts of Wedelia glauca against urinary tract infection causing pathogens.Methods: The plant leaves were extracted with five different solvents based on the polarity. The extraction was done using soxhalation. Antimicrobial activity was determined by agar well diffusion method for both the sample and standard. The acetone plant extract was subjected to gas chromatography-mass spectrometry (GC-MS) analysis for screening phytoconstituents.Results: Preliminary phytochemical screening revealed the presence of diverse phytoconstituents in the plant. The different extracts exhibited a considerable antimicrobial potential. Among the solvents used acetone extract showed comparably better antimicrobial activity with 100% of inhibition rate with the maximum zone of inhibition of 1.6±0.77 mm against Staphylococcus sp. and Aspergillus sp. at the concentration of 5 mg. GC-MS analysis provided 8 major peaks which revealed the existence of a variety of bioactive compounds which may attribute to the efficacy of the plant.Conclusion: W. glauca leaf and flower extracts displayed a broad spectrum of antibacterial and antifungal activity and can be considered as a potential source of newer antibiotic compounds.


Sign in / Sign up

Export Citation Format

Share Document