scholarly journals Sensor based eating time variables of dairy cows in the transition period related to the time to first service

2019 ◽  
Vol 169 ◽  
pp. 104694 ◽  
Author(s):  
P.R. Hut ◽  
A. Mulder ◽  
J. van den Broek ◽  
J.H.J.L. Hulsen ◽  
G.A. Hooijer ◽  
...  
Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1088 ◽  
Author(s):  
Viktoria Brandstetter ◽  
Viktoria Neubauer ◽  
Elke Humer ◽  
Iris Kröger ◽  
Qendrim Zebeli

Dairy cows need sufficient physically effective fibre (peNDF) in their diet to induce chewing with the latter stimulating salivation and maintaining rumen health. Thus, monitoring of chewing activity can be a non-invasive tool to assess fibre adequacy, and thus helping in the optimization of the diet. The objective of this study was to investigate and compare chewing activities of cows during transition period and in the course of lactation. Simmental dairy cows, in four different production groups such as dry period (from 8 to 6 weeks ante-calving), calving (24 h before and after calving), early-lactation (7–60 days in milk), and mid-lactation (60–120 days in milk) were used in the study. Cows were fed partial mixed rations supplemented with different amounts of concentrates. The chewing and drinking activity were recorded using rumination-halters (RumiWatch System, Itin+Hoch GmbH, Liestal, Switzerland). Feed data analysis showed that the peNDF content of the partial mixed ration (PMR) was highest during dry period, decreased around parturition, reaching the nadir in the lactation, in all cases, however, exceeding the peNDF requirements. Chewing data analysis showed that rumination time decreased (p < 0.05) in the time around parturition (from 460 min/d during dry period to 363 min/d 24 h before calving) and increased again in early-lactation (505 min/d), reaching a maximum in mid-lactation (515 min/d). Eating time was lowest for cows during early-lactation (342 min/d) and the highest for those in mid-lactation (462 min/d). Moreover, early-lactation cows spent less time (p < 0.05) drinking (8 min/d) compared to other groups (e.g., 24 min/d the day before calving and 20 min/d postpartum). Monitoring of chewing activity might be a useful tool to assess rumen disorder risks and welfare of the cows during the transition period. It further shows promising results to be used as a tool to identify cows that are shortly before calving.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1088
Author(s):  
Satoshi Haga ◽  
Hiroshi Ishizaki ◽  
Sanggun Roh

Levels of alpha-tocopherol (α-Toc) decline gradually in blood throughout prepartum, reaching lowest levels (hypovitaminosis E) around calving. Despite numerous reports about the disease risk in hypovitaminosis E and the effect of α-Toc supplementation on the health of transition dairy cows, its risk and supplemental effects are controversial. Here, we present some novel data about the disease risk of hypovitaminosis E and the effects of α-Toc supplementation in transition dairy cows. These data strongly demonstrate that hypovitaminosis E is a risk factor for the occurrence of peripartum disease. Furthermore, a study on the effectiveness of using serum vitamin levels as biomarkers to predict disease in dairy cows was reported, and a rapid field test for measuring vitamin levels was developed. By contrast, evidence for how hypovitaminosis E occurred during the transition period was scarce until the 2010s. Pioneering studies conducted with humans and rodents have identified and characterised some α-Toc-related proteins, molecular players involved in α-Toc regulation followed by a study in ruminants from the 2010s. Based on recent literature, the six physiological factors: (1) the decline in α-Toc intake from the close-up period; (2) changes in the digestive and absorptive functions of α-Toc; (3) the decline in plasma high-density lipoprotein as an α-Toc carrier; (4) increasing oxidative stress and consumption of α-Toc; (5) decreasing hepatic α-Toc transfer to circulation; and (6) increasing mammary α-Toc transfer from blood to colostrum, may be involved in α-Toc deficiency during the transition period. However, the mechanisms and pathways are poorly understood, and further studies are needed to understand the physiological role of α-Toc-related molecules in cattle. Understanding the molecular mechanisms underlying hypovitaminosis E will contribute to the prevention of peripartum disease and high performance in dairy cows.


2007 ◽  
Vol 16 (4) ◽  
pp. 253-258 ◽  
Author(s):  
H. A. Seifi ◽  
M. Gorji-Dooz ◽  
M. Mohri ◽  
B. Dalir-Naghadeh ◽  
N. Farzaneh
Keyword(s):  

2013 ◽  
Vol 42 (11) ◽  
pp. 813-823 ◽  
Author(s):  
Francisco Palma Rennó ◽  
José Esler de Freitas Júnior ◽  
Jefferson Rodrigues Gandra ◽  
Lenita Camargo Verdurico ◽  
Marcos Veiga dos Santos ◽  
...  

2018 ◽  
Vol 12 (10) ◽  
pp. 894-903
Author(s):  
Marina Žekić-Stošić ◽  
Zdenko Kanački ◽  
Dragica Stojanović ◽  
Dejan Bugarski ◽  
Miodrag Lazarević ◽  
...  

Introduction: Hormonal and metabolic changes, as well as energy imbalance, can affect health, production and reproductive performance of dairy cows. In the present study, we evaluated phagocytosis and respiratory burst neutrophil activity during the transition period and early lactation and compared it with biochemical and hematological parameters in dairy cows. Methodology: Simmental cows (n = 21) were enrolled in the study. Whole blood samples were collected weekly from 3 weeks pre- calving until 6 weeks post calving. Basic metabolic and blood parameters were assessed by routine laboratory analyses, while neutrophil functions were analyzed by commercial test kits. Results: Optimal neutrophil response was observed pre and post calving. The highest value was recorded in the 6th week after calving (89.54 ± 7.61%) and being significantly higher (p < 0.01) as compared to values recorded at two and one week before and one week after calving. The percentage of activated neutrophils was high during the entire study period: from 70.80 ± 5.22% at the beginning of the study to 89.54 ± 7.61% at the end of the study. During the study period, production of Reactive Oxidative Species by neutrophils was positively correlated with β-hydroxybutyrat and non-esterified fatty acids values (0.454** and 0.423**, respectively) and calcium levels (0.164* and 0.212**, respectively). Conclusions: The most prominent changes in all parameters had no influence on phagocytic and respiratory burst activity of neutrophils. Neutrophil function is preserved at the optimal level during the transition period and early lactation in Simmental cows.


Sign in / Sign up

Export Citation Format

Share Document