How outdoor microclimate mitigation affects building thermal-energy performance: A new design-stage method for energy saving in residential near-zero energy settlements in Italy

2018 ◽  
Vol 127 ◽  
pp. 920-935 ◽  
Author(s):  
Veronica Lucia Castaldo ◽  
Anna Laura Pisello ◽  
Cristina Piselli ◽  
Claudia Fabiani ◽  
Franco Cotana ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2593 ◽  
Author(s):  
Reza Khakian ◽  
Mehrdad Karimimoshaver ◽  
Farshid Aram ◽  
Soghra Zoroufchi Benis ◽  
Amir Mosavi ◽  
...  

The energy performance of buildings and energy-saving measures have been widely investigated in recent years. However, little attention has been paid to buildings located in rural areas. The aim of this study is to assess the energy performance of two-story residential buildings located in the mountainous village of Palangan in Iran and to evaluate the impact of multiple parameters, namely building orientation, window-to-wall ratio (WWR), glazing type, shading devices, and insulation, on its energy performance. To attain a nearly zero energy building design in rural areas, the building is equipped with photovoltaic modules. The proposed building design is then economically evaluated to ensure its viability. The findings indicate that an energy saving of 29% can be achieved compared to conventional buildings, and over 22 MWh of electricity can be produced on an annual basis. The payback period is assessed at 21.7 years. However, energy subsidies are projected to be eliminated in the near future, which in turn may reduce the payback period.


2021 ◽  
Vol 8 ◽  
Author(s):  
Catherine Baxevanou ◽  
Dimitrios Fidaros ◽  
Ilias Giannenas ◽  
Eleftherios Bonos ◽  
Ioannis Skoufos

Broiler facilities consume a lot of energy resulting in natural source depletion and greater greenhouse gas emissions. A way to assess the energy performance of a broiler facility is through an energy audit. In the present paper, an energy protocol for an energy audit is presented covering both phases of data collection and data elaboration. The operational rating phase is analytically and extendedly described while a complete mathematical model is proposed for the asset rating phase. The developed energy audit procedure was applied to poultry chambers located in lowland and mountainous areas of Epirus Greece for chambers of various sizes and technology levels. The energy intensity indices varied from 46 to 89 kWh/m2 of chamber area 0.25–0.48 kWh/kg of produced meat or 0.36–1.3 kWh/bird depending on the chamber technology level (insulation, automation, etc.) and the location where the unit was installed. The biggest energy consumer was heating followed by energy consumption for ventilation and cooling. An advanced technology level can improve energy performance by ~ 27%−31%. Proper insulation (4–7 cm) can offer a reduction of thermal energy consumption between 10 and 35%. In adequately insulated chambers, the basic heat losses are due to ventilation. Further energy savings can be achieved with more precise ventilation control. Automation can offer additional electrical energy saving for cooling and ventilation (15–20%). Energy-efficient lights can offer energy saving up to 5%. The use of photovoltaic (PV) technology is suggested mainly in areas where net-metering holds. The use of wind turbines is feasible only when adequate wind potential is available. Solar thermal energy is recommended in combination with a heat pump if the unit's heating and cooling systems use hot/cold water or air. Finally, the local production of biogas with anaerobic fermentation for producing thermal or electrical energy, or cogenerating both, is a choice that should be studied individually for each farm.


2017 ◽  
Vol 42 (2) ◽  
pp. 82-88
Author(s):  
Jian Yao ◽  
Rong-Yue Zheng

This study investigated the building energy, glare and daylight performance of overhang using building simulation software Energyplus in order to identify an optimal depth in hot summer and cold winter zone. A typical building with different window-to-wall ratios (WWR) was modeled and different overhang depths were considered. Results showed that the optimal overhang depths are 0.9m (WWR=0.15), 1.16m (WWR=0.3) and 1.62m (WWR=0.57), respectively. The total energy savings from overhang design can be ranging from about 3% to 24% depending on WWR and overhang depth. Moreover, the regression relationship between optimal overhang depth and WWR is given to help identify the best overhang dimension at the design stage. The potential energy saving performance for different WWRs then can be roughly inferred according to a total energy saving chart without building energy simulation. In conclusion, to be applicable in buildings, an overhang depth of 0.6-0.8m is suitable in this region since it has a balance in energy performance and aesthetic appearance.


2022 ◽  
pp. 49-59
Author(s):  
MARYNA SHOVKALIUK ◽  
ROMAN VASHCHYSHYN

There are many approaches to assessing the energy performance of buildings. In Ukraine, previously, when developing the energy passport of buildings, a method based on stationary calculations using degree-days of the heating period was used. Then, for the tasks of energy certification of buildings, a national calculation method based on the monthly quasi-stationary method was introduced. The simplified hourly method of calculation allows to consider thermal inertia of protections. In recent years, the methods of dynamic energy modeling using software packages have become increasingly relevant, because it allows at the preliminary design stage to estimate energy costs for different building needs before and after the implementation of energy efficiency projects and provides the ability to create 3D models based on geometric and thermal parameters, tasks of different configurations and types of engineering systems of the building. To build an energy model, a training building was chosen to determine energy consumption indicators and identify measures that have the greatest impact on the energy performance of the building.Purpose. Evaluation of energy characteristics of the educational building of a higher education institution with modeling of energy consumption in specialized software, technical and economic evaluation of opportunities to increase energy efficiency.Research methods. Energy inspection of the object of research and technical and economic analysis with the use of engineering methods of calculation, experimental measurements of the parameters of the microclimate of the building with the use of laboratory equipment were performed. Simulations are used in specialized software products RETScreen, EnergyPlus, DesignBuilder.Result. With the help of the developed models the structure of energy consumption of the educational building is obtained and the assessment of energy saving potential is carried out; in case of implementation of the proposed measures it is expected to reduce the consumption of energy resources and monetary costs for their payment, as well as improve the quality of educational services. The research was conducted as part of a master's thesis.Scientific novelty. The technical potential of this software for modeling the energy performance of a building of complex configuration on the example of the educational building of the educational institution, analyzed the methods of processing initial data for programs, comparative analysis of calculation results for the actual condition of the building, baseline and after implementing energy saving measures.Practical significance. As a result of the research, the potential of using different software packages to perform applied research of the master's dissertation was determined and a project of complex thermal modernization of the building of the educational building was developed.


2015 ◽  
Vol 725-726 ◽  
pp. 1564-1571
Author(s):  
Radmila Sinđić Grebović ◽  
Yulija Zolotova

Energy Performance of Buildings Directive (EPBD, 2010/31/EU) requires Member States to introduce minimum energy performance requirements for buildings, and set these requirements based on a cost-optimal methodology. This methodology introduces the prerequisite to consider the global lifetime costs of buildings to shape their future energy performance requirements. Methodology predicts that, beside the investment costs, the operational, maintenance, disposal and energy saving costs of buildings should be taken into account.This paper discusses the use methodology related to nearly Zero-Energy Buildings (nZEB) requirements.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Kweonhyoung Lee ◽  
Seungyeon Choo

There is a great interest in building information modeling (BIM) and energy saving worldwide. In reality, however, insufficient studies have been conducted on the development of design methods to perform energy performance analysis. Thus, there is a problem that it is difficult to objectively obtain reliability in energy performance assessment of architectural designs such as scale and size of buildings. In addition, the energy performance analysis is considered as a different field from eco-friendly design methods, and there is another problem that low-carbon design methods more dependent on thermal insulation performance and heating ventilation and air-conditioning (HVAC) system than on original design methods are mainly developed. In order to solve this problem, this study aims to develop design methods capable of considering energy performance from the early design stage. Designers are required to intuitively understand the results through energy performance analysis using BIM tools and to reflect them in design. To this end, this study analyzed the correlation with energy performance using only basic architectural design elements with mass buildings. This has the advantage of establishing more free mass design mass design considering energy performance even if design and main structure are yet to be determined.


2021 ◽  
Vol 13 (9) ◽  
pp. 5201
Author(s):  
Kittisak Lohwanitchai ◽  
Daranee Jareemit

The concept of a zero energy building is a significant sustainable strategy to reduce greenhouse gas emissions. The challenges of zero energy building (ZEB) achievement in Thailand are that the design approach to reach ZEB in office buildings is unclear and inconsistent. In addition, its implementation requires a relatively high investment cost. This study proposes a guideline for cost-optimal design to achieve the ZEB for three representative six-story office buildings in hot and humid Thailand. The energy simulations of envelope designs incorporating high-efficiency systems are carried out using eQuest and daylighting simulation using DIALux evo. The final energy consumptions meet the national ZEB target but are higher than the rooftop PV generation. To reduce such an energy gap, the ratios of building height to width are proposed. The cost-benefit of investment in ZEB projects provides IRRs ranging from 10.73 to 13.85%, with payback periods of 7.2 to 8.5 years. The energy savings from the proposed designs account for 79.2 to 81.6% of the on-site energy use. The investment of high-performance glazed-windows in the small office buildings is unprofitable (NPVs = −14.77–−46.01). These research results could help architects and engineers identify the influential parameters and significant considerations for the ZEB design. Strategies and technical support to improve energy performance in large and mid-rise buildings towards ZEB goals associated with the high investment cost need future investigations.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 59
Author(s):  
Abraham Yezioro ◽  
Isaac Guedi Capeluto

Improving the energy efficiency of existing and new buildings is an important step towards achieving more sustainable environments. There are various methods for grading buildings that are required according to regulations in different places for green building certification. However, in new buildings, these rating systems are usually implemented at late design stages due to their complexity and lack of integration in the architectural design process, thus limiting the available options for improving their performance. In this paper, the model ENERGYui used for design and rating buildings in Israel is presented. One of its main advantages is that it can be used at any design stage, including the early ones. It requires information that is available at each stage only, as the additional necessary information is supplemented by the model. In this way, architects can design buildings in a way where they are aware of each design decision and its impact on their energy performance, while testing different design directions. ENERGYui rates the energy performance of each basic unit, as well as the entire building. The use of the model is demonstrated in two different scenarios: an office building in which basic architectural features such as form and orientation are tested from the very beginning, and a residential building in which the intervention focuses on its envelope, highlighting the possibilities of improving their design during the whole design process.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1080
Author(s):  
Mamdooh Alwetaishi ◽  
Omrane Benjeddou

The concern regarding local responsive building design has gained more attention globally as of late. This is due to the issue of the rapid increase in energy consumption in buildings for the purpose of heating and cooling. This has become a crucial issue in educational buildings and especially in schools. The major issue in school buildings in Saudi Arabia is that they are a form of prototype school building design (PSBD). As a result, if there is any concern in the design stage and in relation to the selection of building materials, this will spread throughout the region. In addition to that, the design is repeated regardless of the climate variation within the kingdom of Saudi Arabia. This research will focus on the influence of the window to wall ratio on the energy load in various orientations and different climatic regions. The research will use the energy computer tool TAS Environmental Design Solution Limited (EDSL) to calculate the energy load as well as solar gain. During the visit to the sample schools, a globe thermometer will be used to monitor the globe temperature in the classrooms. This research introduces a framework to assist architects and engineers in selecting the proper window to wall ratio (WWR) in each direction within the same building based on adequate natural light with a minimum reliance on energy load. For ultimate WWR for energy performance and daylight, the WWR should range from 20% to 30%, depending on orientation, in order to provide the optimal daylight factor combined with building energy efficiency. This ratio can be slightly greater in higher altitude locations.


Sign in / Sign up

Export Citation Format

Share Document