Glucosinolate variation among organs, growth stages and seasons suggests its dominant accumulation in sexual over asexual-reproductive organs in white radish

2022 ◽  
Vol 291 ◽  
pp. 110617
Author(s):  
Byeong Wook Jeon ◽  
Man-Ho Oh ◽  
Hyoung Seok Kim ◽  
Eun Ok Kim ◽  
Won Byoung Chae
Author(s):  
Krasimir Ivanov ◽  
Andon Vasilev ◽  
Anyo Mitkov ◽  
Nguyen Nguyen ◽  
Tonyo Tonev

Highlights - The application of foliar fertilisers is extremely suitable as the possibility of much faster zinc absorption than from the soil. - Zn-fertilisation of maize plants during the initial growth stages plays a decisive role in the formation of the reproductive organs of maize. - Foliar zinc fertilisers can entirely recover the physiological performance of plants grown under conditions of zinc deficiency.   Maize is one of the most sensitive industrial crops of zinc supply. Questions about fertilisation methods and the type of fertilisers used are the subject of serious scientific discussion. The key objective of this paper was to evaluate the possibilities to recover the yielding potential of Zn-deficient young maize plants by application of nanosized Zn-containing foliar fertilisers. The agronomic response of Zn-deficient maize plants to foliar fertilisation with nanoscale zinc-containing foliar fertilisers was investigated. The study was conducted in two stages: (i) planting and growing the plants under controlled conditions in a zinc-deficient environment for three months and (ii) moving the plants and continuing the experiment in field conditions. A single spray with two nanosized zinc-containing foliar fertilisers was carried out. The physiological status of the plants and the dynamic of zinc and micro- and macroelements concentration in plant organs were monitored. The influence of foliar zinc fertilisation on yield and grain structural components has been determined. Our results indicated that zinc fertilisation throughout the initial growth stages plays a decisive role in the formation of the reproductive organs of maize plants. Foliar zinc fertilisers can entirely recover the physiological performance of plants grown under conditions of zinc deficiency.


2015 ◽  
Vol 29 (4) ◽  
pp. 485-492 ◽  
Author(s):  
Anna Podleśna ◽  
Bożena Gładyszewska ◽  
Janusz Podleśny ◽  
Wojciech Zgrajka

Abstract The aim of this study was to determine the effect of pre-sowing helium-neon (He-Ne) laser irradiation of pea seeds on changes in seed biochemical processes, germination rate, seedling emergence, growth rate, and yield. The first experimental factor was exposure to laser radiation: D0 - no irradiation, D3 - three exposures, D5 - five exposures, and the harvest dates were the second factor. Pre-sowing treatment of pea seeds with He-Ne laser light increased the concentrations of amylolytic enzymes and the content of indole-3-acetic acid (IAA) in pea seeds and seedlings. The exposure of seeds to He-Ne laser light improved the germination rate and uniformity and modified growth stages, which caused acceleration of flowering and ripening of pea plants. Laser light stimulation improved the morphological characteristics of plants by increasing plant height and leaf surface area. Irradiation improved the yield of vegetative and reproductive organs of pea, although the effects varied at the different growth stages. The increase in the seed yield resulted from a higher number of pods and seeds per plant, whereas no significant changes were observed in the number of seeds per pod. Both radiation doses exerted similarly stimulating effects on pea growth, development, and yield.


Antioxidants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 237 ◽  
Author(s):  
Pavel Feduraev ◽  
Galina Chupakhina ◽  
Pavel Maslennikov ◽  
Natalia Tacenko ◽  
Liubov Skrypnik

The study investigated the accumulation of phenolic compounds and the antioxidant activity of extracts of various parts of R. crispus and R. obtusifolius, collected at the flowering stage and the fruiting stage. Half of the collected plants were divided into root, stem, leaves, and reproductive organs (inflorescence). The other half was used to study the vertical distribution of biologically active components and antioxidants throughout the plant. The samples were analyzed for total catechins content, total proanthocyanidins content, total phenolic content, and total antioxidant activity (1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2’azinobis(3)ethylbenzthiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP) assays). All analyses were performed in four replicates. In general, a similar trend was observed in the distribution of phenolic compounds in the studied species. The maximum content of these secondary metabolites was noted in the reproductive organs, both in the flowering and fruiting period. Stems were characterized by a minimum content of the studied classes of substances. The antioxidant activity of the sorrels studied parts can be arranged in the following order: the generative part (flowers, seeds) > leaves > root > stem (for flowering and fruiting stages). It was found that parts of the root closer to the stem differed in higher activity.


Author(s):  
Wiktor Djaczenko ◽  
Carmen Calenda Cimmino

The simplicity of the developing nervous system of oligochaetes makes of it an excellent model for the study of the relationships between glia and neurons. In the present communication we describe the relationships between glia and neurons in the early periods of post-embryonic development in some species of oligochaetes.Tubifex tubifex (Mull. ) and Octolasium complanatum (Dugès) specimens starting from 0. 3 mm of body length were collected from laboratory cultures divided into three groups each group fixed separately by one of the following methods: (a) 4% glutaraldehyde and 1% acrolein fixation followed by osmium tetroxide, (b) TAPO technique, (c) ruthenium red method.Our observations concern the early period of the postembryonic development of the nervous system in oligochaetes. During this period neurons occupy fixed positions in the body the only observable change being the increase in volume of their perikaryons. Perikaryons of glial cells were located at some distance from neurons. Long cytoplasmic processes of glial cells tended to approach the neurons. The superimposed contours of glial cell processes designed from electron micrographs, taken at the same magnification, typical for five successive growth stages of the nervous system of Octolasium complanatum are shown in Fig. 1. Neuron is designed symbolically to facilitate the understanding of the kinetics of the growth process.


Author(s):  
G. M. Kozubov

The ultrastructure of reproductive organs of pine, spruce, larch and ginkgo was investigated. It was found that the male reproductive organs possess similar organization. The most considerable change in the ultrastructure of the microsporocytes occur in meiosis. Sporoderm is being laid at the late tetrad stage. The cells of the male gameto-phyte are distinguished according to the metabolic activity of the or- ganells. They are most weakly developed in the spermiogenic cell. Ta-petum of the gymnosperms is of the periplasmodic - secretorial type. The Ubisch bodies which possess similar structure in the types investigated but are specific in details in different species are produced in tapetum.Parietal and subepidermal layers are distinguished for their high metabolic activity and are capable of the autonomous photosynthesis. Female reproductive organs differ more greatly in their struture and have the most complicated structure in primitive groups. On the first stages of their formation the inner cells of nucellus are transformed into the nucellar tapetum in which the structures similar to the Ubisch bodies taking part in the formation of the sporoderm of female gametophyte have been found.


Author(s):  
RAD Mackenzie ◽  
G D W Smith ◽  
A. Cerezo ◽  
J A Liddle ◽  
CRM Grovenor ◽  
...  

The position sensitive atom probe (POSAP), described briefly elsewhere in these proceedings, permits both chemical and spatial information in three dimensions to be recorded from a small volume of material. This technique is particularly applicable to situations where there are fine scale variations in composition present in the material under investigation. We report the application of the POSAP to the characterisation of semiconductor multiple quantum wells and metallic multilayers.The application of devices prepared from quantum well materials depends on the ability to accurately control both the quantum well composition and the quality of the interfaces between the well and barrier layers. A series of metal organic chemical vapour deposition (MOCVD) grown GaInAs-InP quantum wells were examined after being prepared under three different growth conditions. These samples were observed using the POSAP in order to study both the composition of the wells and the interface morphology. The first set of wells examined were prepared in a conventional reactor to which a quartz wool baffle had been added to promote gas intermixing. The effect of this was to hold a volume of gas within the chamber between growth stages, leading to a structure where the wells had a composition of GalnAsP lattice matched to the InP barriers, and where the interfaces were very indistinct. A POSAP image showing a well in this sample is shown in figure 1. The second set of wells were grown in the same reactor but with the quartz wool baffle removed. This set of wells were much better defined, as can be seen in figure 2, and the wells were much closer to the intended composition, but still with measurable levels of phosphorus. The final set of wells examined were prepared in a reactor where the design had the effect of minimizing the recirculating volume of gas. In this case there was again further improvement in the well quality. It also appears that the left hand side of the well in figure 2 is more abrupt than the right hand side, indicating that the switchover at this interface from barrier to well growth is more abrupt than the switchover at the other interface.


2018 ◽  
Vol 23 (4) ◽  
pp. 9-10
Author(s):  
James Talmage ◽  
Jay Blaisdell

Abstract Pelvic fractures are relatively uncommon, and in workers’ compensation most pelvic fractures are the result of an acute, high-impact event such as a fall from a roof or an automobile collision. A person with osteoporosis may sustain a pelvic fracture from a lower-impact injury such as a minor fall. Further, major parts of the bladder, bowel, reproductive organs, nerves, and blood vessels pass through the pelvic ring, and traumatic pelvic fractures that result from a high-impact event often coincide with damaged organs, significant bleeding, and sensory and motor dysfunction. Following are the steps in the rating process: 1) assign the diagnosis and impairment class for the pelvis; 2) assign the functional history, physical examination, and clinical studies grade modifiers; and 3) apply the net adjustment formula. Because pelvic fractures are so uncommon, raters may be less familiar with the rating process for these types of injuries. The diagnosis-based methodology for rating pelvic fractures is consistent with the process used to rate other musculoskeletal impairments. Evaluators must base the rating on reliable data when the patient is at maximum medical impairment and must assess possible impairment from concomitant injuries.


1997 ◽  
Vol 99 (1) ◽  
pp. 185-189
Author(s):  
Wen-Shaw Chen ◽  
Kuang-Liang Huang ◽  
Hsiao-Ching Yu

2019 ◽  
Vol 14 (9) ◽  
pp. 972-975
Author(s):  
Jun Han ◽  
Fengfeng Shi ◽  
Yanhui Xing ◽  
Peiyuan Wan ◽  
Zhiyuan Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document