Effects of melatonin treatment on ethanol fermenation and ERF expression in kiwifruit cv. Bruno during postharvest

2022 ◽  
Vol 293 ◽  
pp. 110696
Author(s):  
Jiao Cheng ◽  
Anran Zheng ◽  
Huihong Li ◽  
Chen Huan ◽  
Tianjia Jiang ◽  
...  
Keyword(s):  
Reproduction ◽  
2000 ◽  
pp. 151-156 ◽  
Author(s):  
E Diaz ◽  
D Pazo ◽  
AI Esquifino ◽  
B Diaz

The effect of age and melatonin on the activity of the neuroendocrine reproductive system was studied in young cyclic (3-5 months-old), and old acyclic (23-25 month-old) female rats. Pituitary responsiveness to a bolus of GnRH (50 ng per 100 g body weight) was assessed at both reproductive stages in control and melatonin-treated (150 micrograms melatonin per 100 g body weight each day for 1 month) groups. After this experiment, female rats were treated for another month to study the influence of ageing and melatonin on the reproductive axis. Plasma LH, FSH, prolactin, oestradiol and progesterone were measured. A positive LH response to GnRH was observed in both control groups (cyclic and acyclic). However, a response of greater magnitude was observed in old acyclic rats. Melatonin treatment reduced this increased response in acyclic rats and produced a pituitary responsiveness similar to that of young cyclic rats. FSH secretion was independent of GnRH administration in all groups, indicating desynchronization between LH and FSH secretion in response to GnRH in young animals and during senescence. No effect on prolactin was observed. Significantly higher LH (3009.11 +/- 1275.08 pg ml(-1); P < 0.05) and FSH concentrations (5879.28 +/- 1631.68 pg ml(-1); P < 0.01) were seen in acyclic control rats. After melatonin treatment, LH (811.11 +/- 89.71 pg ml(-1)) and FSH concentrations (2070 +/- 301.62 pg ml(-1)) decreased to amounts similar to those observed in young cyclic rats. However, plasma concentrations of oestradiol and progesterone were not reduced. In conclusion, the results of the present study indicate that, during ageing, the effect of melatonin is exerted primarily at the hypothalamo-pituitary axis rather than on the ovary. Melatonin restored the basal concentrations of pituitary hormones and pituitary responsiveness to similar values to those observed in young rats.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 820
Author(s):  
José M. Lorente-Mento ◽  
Fabián Guillén ◽  
Salvador Castillo ◽  
Domingo Martínez-Romero ◽  
Juan M. Valverde ◽  
...  

The effect of melatonin pomegranate tree treatments on fruit quality and bioactive compounds with antioxidant activity at harvest and during storage at 10 °C for 60 days was assayed in two consecutive years, 2019 and 2020. In the first year, trees were treated with 0.1, 0.3 and 0.5 mM of melatonin along the developmental fruit growth cycle, and results showed that bioactive compounds (total phenolics and total and individual anthocyanins) and antioxidant activity at harvest were higher in fruits from melatonin-treated trees than in controls. Other fruit quality parameters, such as firmness, total soluble solids and aril red colour, were also increased as a consequence of melatonin treatment. In fruit from control tress, firmness and acidity levels decreased during storage, while increases occurred on total soluble solids, leading to fruit quality reductions. These changes were delayed, and even maintenance of total acidity was observed, in fruit from melatonin-treated trees with respect to controls, resulting in a fruit shelf-life increase. Moreover, concentration of phenolics and anthocyanins and antioxidant activity were maintained at higher levels in treated than in control fruits during the whole storage period. In general, all the mentioned effects were found at the highest level with the 0.1 mM melatonin dose, and then it was selected for repeating the experiment in the second year and results of the first year were confirmed. Thus, 0.1 mM melatonin treatment could be a useful tool to enhance aril content on bioactive compounds with antioxidant activity and health beneficial effects and to improve quality traits of pomegranate fruit, at harvest and during postharvest storage.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Longqing Shi ◽  
Junian Zhang ◽  
Liangmiao Qiu ◽  
Zhaowei Jiang ◽  
Zhenxing Xie ◽  
...  

Abstract Background Melatonin has been proved to exist and play importance roles in rice plant, such as biosynthesis and resistance. However, little is known about the function of melatonin in its monophagous pest, the brown planthopper. Methods In this study, we examined the effects of melatonin on the copulatory and locomotor behaviors of brachypterous and macropterous adult planthoppers by exposing them to melatonin, luzindole (a melatonin receptor antagonist), or a combination of melatonin and luzindole. Results A total of 68.7% of copulation events occurred at night in the control, while 31.2% occurred at night in the melatonin treatment, which led to a decrease in offspring. Brachypterous males were involved in mating events in the melatonin treatment but not in the other two treatments or the control. The daily locomotor pattern in the melatonin treatment was markedly different from that in the luzindole and melatonin and luzindole treatments. The total locomotor activities of the macropterous and brachypterous males exposed with melatonin were suppressed compared to those in the control. Melatonin significantly decreased the daytime and nighttime locomotor activities of macropterous females. In comparison, the activity of brachypterous females decreased slightly in the daytime but was more than double that of the control females at night. Conclusions Our results reveal that melatonin plays a role in the behaviors of brown planthoppers.


2021 ◽  
Vol 20 (1) ◽  
pp. 632-639
Author(s):  
Giovanni Cosso ◽  
Maria Consuelo Mura ◽  
Luisa Pulinas ◽  
Giulio Curone ◽  
Daniele Vigo ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Di Dong ◽  
Mengdi Wang ◽  
Yinreuizhi Li ◽  
Zhuocheng Liu ◽  
Shuwen Li ◽  
...  

AbstractZoysia japonica is a commonly used turfgrass species around the world. Seed germination is a crucial stage in the plant life cycle and is particularly important for turf establishment and management. Experiments have confirmed that melatonin can be a potential regulator signal in seeds. To determine the effect of exogenous melatonin administration and explore the its potential in regulating seed growth, we studied the concentrations of several hormones and performed a transcriptome analysis of zoysia seeds after the application of melatonin. The total antioxidant capacity determination results showed that melatonin treatment could significantly improve the antioxidant capacity of zoysia seeds. The transcriptome analysis indicated that several of the regulatory pathways were involved in antioxidant activity and hormone activity. The hormones concentrations determination results showed that melatonin treatment contributed to decreased levels of cytokinin, abscisic acid and gibberellin in seeds, but had no significant effect on the secretion of auxin in early stages. Melatonin is able to affect the expression of IAA (indoleacetic acid) response genes. In addition, melatonin influences the other hormones by its synergy with other hormones. Transcriptome research in zoysia is helpful for understanding the regulation of melatonin and mechanisms underlying melatonin-mediated developmental processes in zoysia seeds.


2001 ◽  
Vol 50 (6) ◽  
pp. 756-760 ◽  
Author(s):  
Eloisa Gitto ◽  
Malgorzata Karbownik ◽  
Russel J Reiter ◽  
Dun Xian Tan ◽  
Salvatore Cuzzocrea ◽  
...  
Keyword(s):  

2016 ◽  
Vol 203 (1) ◽  
pp. 29-54 ◽  
Author(s):  
Hanan H. Abd-Elhafeez ◽  
Doaa M. Mokhtar ◽  
Ahmed H.S. Hassan

Telocytes (TCs) are a special type of interstitial cell with characteristic cellular processes that are described in many organs. The current study aimed to investigate TCs in seminal vesicles of the Soay ram responding to melatonin treatment during the nonbreeding season by conventional immunohistochemical stains, and to detect the ultrastructural and morphometrical changes of TCs. TCs in the control group showed a broad range of staining affinity and also reacted positively to CD117/c-kit, CD34, desmin, S-100 protein, and progesterone and estrogen receptors alpha, while after melatonin treatment a strong reaction against these 6 antibodies was recorded. Electron microscopically, TCs in the control group were characterized by a small cell body with distinct long cytoplasmic extensions called telopodes (Tps). Tps had alternation of the thin segment (podomers) and dilated segments (podoms), in which the latter accommodate mitochondria, rough endoplasmic reticulum and caveolae. TCs and their Tps were interconnected by homo- and heterocellular junctions and form a wide network to communicate between different cell types. Tps showed close contact with immune cells, progenitor stem cells, smooth muscle cells and other interstitial cells. Melatonin caused a significant increase in the number of TCs, length of Tps, and number and diameter of secretory vesicles. Also, the melatonin-treated group showed exaggerated secretory activity in the form of a massive release of secretory vesicles from Tps. Moreover, Tps showed an increase in their contact with blood and lymphatic capillaries, nerve endings and Schwann cells. In addition, the shedding of secretory structures (exosomes, ectosomes, and multivesicular bodies) was greater from Tps, which were involved in paracrine signaling in the melatonin-treated group. The length and ramifications of Tps together with the intercellular junctions and the releasing of shed vesicles or exosomes assumed an essential role of TCs in intercellular signaling and coordination. On the basis of their distribution and morphology, we investigated whether the different locations of TCs could be associated with different roles.


Sign in / Sign up

Export Citation Format

Share Document