Using diagnostic ratios to characterize sources of polycyclic aromatic hydrocarbons in the Great Lakes atmosphere

Author(s):  
Yan Wu ◽  
Amina Salamova ◽  
Marta Venier
Toxics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 76
Author(s):  
Rashid Mohammed ◽  
Zi-Feng Zhang ◽  
Chao Jiang ◽  
Ying-Hua Hu ◽  
Li-Yan Liu ◽  
...  

Polycyclic aromatic hydrocarbons (PAHs), 33 methylated PAHs (Me-PAHs), and 14 nitrated PAHs (NPAHs) were measured in wastewater treatment plants (WWTPs) to study the removal efficiency of these compounds through the WWTPs, as well as their source appointment and potential risk in the effluent. The concentrations of ∑PAHs, ∑Me-PAHs, and ∑NPAHs were 2.01–8.91, 23.0–102, and 6.21–171 µg/L in the influent, and 0.17–1.37, 0.06–0.41 and 0.01–2.41 µg/L in the effluent, respectively. Simple Treat 4.0 and meta-regression methods were applied to calculate the removal efficiencies (REs) for the 63 PAHs and their derivatives in 10 WWTPs and the results were compared with the monitoring data. Overall, the ranges of REs were 55.3–95.4% predicated by the Simple Treat and 47.5–97.7% by the meta-regression. The results by diagnostic ratios and principal component analysis PCA showed that “mixed source” biomass, coal composition, and petroleum could be recognized to either petrogenic or pyrogenic sources. The risk assessment of the effluent was also evaluated, indicating that seven carcinogenic PAHs, Benzo[a]pyrene, Dibenz[a,h]anthracene, and Benzo(a)anthracene were major contributors to the toxics equivalency concentrations (TEQs) in the effluent of WWTPs, to which attention should be paid.


Atmosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 412 ◽  
Author(s):  
Suwubinuer Rekefu ◽  
Dilinuer Talifu ◽  
Bo Gao ◽  
Yusan Turap ◽  
Mailikezhati Maihemuti ◽  
...  

PM2.5 and PM2.5–10 samples were simultaneously collected in Urumqi from January to December 2011, and 14 priority polycyclic aromatic hydrocarbons (PAHs) were determined. The mean concentrations of total PAHs in PM2.5 and PM2.5–10 were 20.90~844.22 ng m−3 and 19.65~176.5 ng m−3 respectively, with the highest in winter and the lowest in summer. Above 80% of PAHs were enriched in PM2.5, which showed remarkable seasonal variations compared to coarse particles. High molecular weight (HMW) PAHs were predominant in PM2.5 (46.61~85.13%), whereas the proportions of lower molecular weight (LMW) and HMW PAHs in PM2.5–10 showed a decreasing and an increasing trend, respectively, from spring to winter. The estimated concentrations of benzo[a]pyrene equivalent carcinogenic potency (BaPeq) in PM2.5 (10.49~84.52 ng m−3) were higher than that of in PM2.5–10 (1.15~13.33 ng m−3) except in summer. The estimated value of inhalation cancer risk in PM2.5 and PM2.5–10 were 1.63 × 10−4~7.35 × 10−3 and 9.94 × 10−5~1.16 × 10−3, respectively, far exceeding the health-based guideline level of 10−4. Diagnostic ratios and positive matrix factorization results demonstrated that PAHs in PM2.5 and PM2.5–10 were from similar sources, such as coal combustion, biomass burning, coking, and petroleum combustion, respectively. Coal combustion was the most important source for PAHs both in PM2.5 and PM2.5–10, accounting for 54.20% and 50.29%, respectively.


2019 ◽  
Vol 19 (13) ◽  
pp. 8741-8758 ◽  
Author(s):  
Atallah Elzein ◽  
Rachel E. Dunmore ◽  
Martyn W. Ward ◽  
Jacqueline F. Hamilton ◽  
Alastair C. Lewis

Abstract. Ambient particulate matter (PM) can contain a mix of different toxic species derived from a wide variety of sources. This study quantifies the diurnal variation and nocturnal abundance of 16 polycyclic aromatic hydrocarbons (PAHs), 10 oxygenated PAHs (OPAHs) and 9 nitrated PAHs (NPAHs) in ambient PM in central Beijing during winter. Target compounds were identified and quantified using gas chromatography–time-of-flight mass spectrometry (GC-Q-ToF-MS). The total concentration of PAHs varied between 18 and 297 ng m−3 over 3 h daytime filter samples and from 23 to 165 ng m−3 in 15 h night-time samples. The total concentrations of PAHs over 24 h varied between 37 and 180 ng m−3 (mean: 97±43 ng m−3). The total daytime concentrations during high particulate loading conditions for PAHs, OPAHs and NPAHs were 224, 54 and 2.3 ng m−3, respectively. The most abundant PAHs were fluoranthene (33 ng m−3), chrysene (27 ng m−3), pyrene (27 ng m−3), benzo[a]pyrene (27 ng m−3), benzo[b]fluoranthene (25 ng m−3), benzo[a]anthracene (20 ng m−3) and phenanthrene (18 ng m−3). The most abundant OPAHs were 9,10-anthraquinone (18 ng m−3), 1,8-naphthalic anhydride (14 ng m−3) and 9-fluorenone (12 ng m−3), and the three most abundant NPAHs were 9-nitroanthracene (0.84 ng m−3), 3-nitrofluoranthene (0.78 ng m−3) and 3-nitrodibenzofuran (0.45 ng m−3). ∑PAHs and ∑OPAHs showed a strong positive correlation with the gas-phase abundance of NO, CO, SO2 and HONO, indicating that PAHs and OPAHs can be associated with both local and regional emissions. Diagnostic ratios suggested emissions from traffic road and coal combustion were the predominant sources of PAHs in Beijing and also revealed the main source of NPAHs to be secondary photochemical formation rather than primary emissions. PM2.5 and NPAHs showed a strong correlation with gas-phase HONO. 9-Nitroanthracene appeared to undergo a photodegradation during the daytime and showed a strong positive correlation with ambient HONO (R=0.90, P < 0.001). The lifetime excess lung cancer risk for those species that have available toxicological data (16 PAHs, 1 OPAH and 6 NPAHs) was calculated to be in the range 10−5 to 10−3 (risk per million people ranges from 26 to 2053 cases per year).


2021 ◽  
Author(s):  
Anne Corminboeuf ◽  
Jean-Carlos Montero-Serrano ◽  
Richard St-Louis

<p>The concentrations of 23 polycyclic aromatic hydrocarbons (PAHs; 16 parent and 7 alkylated PAHs) in 113 surface marine sediment samples, 13 on-land sediment samples and 8 subsampled push cores retrieved from the Canadian Arctic Archipelago (CAA) were calculated. PAHs were extracted via accelerated solvent extraction (ASE) and quantified via gas chromatography-mass spectrometry (GC-MS). The sums of the concentrations 16 PAHs in the surface sediments ranged from 7.8 to 247.7 ng g<sup>-1</sup> (dry weight [dw]) basis). The PAH inputs to the sediments have remained constant during the last century and agree with the results obtained for the surface sediments. Diagnostic ratios indicated that the PAHs in the CAA mainly originate from natural petrogenic sources, with some pyrogenic sources. Temporal trends did not indicate major source shifts and largely indicated petrogenic inputs. Overall, the sediments retrieved from the CAA have low PAH concentrations that are mainly natural.</p>


2021 ◽  
Author(s):  
Xiaohua Ma ◽  
Hao Yang ◽  
Changchun Huang ◽  
Tao Huang ◽  
Shuaidong Li

Abstract In this study, the sedimentary records, sources, and ecological risks of polycyclic aromatic hydrocarbons (PAHs) in Dianchi Lake were analyzed. The concentration ranges of ΣPAH16 in the sediments of Dianchi Lake were 368–990 ng/g, with an average value of 572 ng/g, peaking in 1988. Economic development and rapid population growth, as well as the rapid growth of coal consumption, have a greater impact on the HMW PAHs than on the LMW PAHs in the sedimentary environment. The results of the diagnostic ratios and PCA model show that the main sources of PAHs were coal and biomass combustion, as well as fossil fuel combustion sources in individual years. The risk assessment results showed that the PAH concentrations in the sediment were within a safe range. In the past 100 years of sediment pore water, except for Phe, which reached chronic toxic pollution levels in some years, other 2-3 ring LMW PAHs have been within a safe range. With the development of industrialization and urbanization, the burning of fossil fuels such as coal and petroleum has increased, and some of the 4-6 ring HMW PAHs have reached chronic toxicity or even acute toxicity in the sediment pore water.


Author(s):  
Xuan Zhang ◽  
Lulu Zhang ◽  
Lu Yang ◽  
Quanyu Zhou ◽  
Wanli Xing ◽  
...  

Background: Background sites are mainly affected by long-range-transported air pollutants, resulting in potential adverse effects on local atmospheric environments. A 4–5 year observational study was conducted to illustrate the air pollution profile at the Kanazawa University Wajima air monitoring station (KUWAMS), an ideal remote background site in Japan. Methods: Nine polycyclic aromatic hydrocarbons (PAHs) in the particulate phase and various air pollutants were continuously monitored for 4–5 years. Diagnostic ratios of PAHs and back-trajectory analysis were applied to trace the possible sources of the air pollutants collected at the sampling site. Results: The atmospheric concentration of PAHs in the atmosphere at the site decreased from 2014 to 2019, benefit from the predominant air pollution control policy in China and Japan. Common air pollutants including sulfur dioxide (SO2), nitrogen oxides (NOx), ozone, methane (CH4), and non-methane hydrocarbon (NMHC) were detected in low concentrations from 2016 to 2019, while ozone (O3) and particulate matter (PM2.5, PM with a diameter less than 2.5 μm) were present in high levels that exceeded the Japanese standards. Most air pollutants peaked in spring and showed evident diurnal variations in spring and summer. Conclusions: This is the first study to clarify the atmospheric behaviors of multiple air pollutants at a background site in Japan. Significant external air pollutant impact and unneglectable air pollution were demonstrated at KUWAMS, indicating the importance of studying atmospheric pollution at remote sites.


2020 ◽  
Vol 10 (13) ◽  
pp. 4632
Author(s):  
Myoungki Song ◽  
Kwonho Lee ◽  
Sea-Ho Oh ◽  
Min-Suk Bae

Polycyclic aromatic hydrocarbons (PAHs), an important class of hazardous airborne pollutants, are mutagenic and carcinogenic substances known to be released during the paving of asphalt. In this study, PAHs emitted from an asphalt mix plant were analyzed to investigate the effects on a suburban residential area. Black carbon, organic carbon, elemental carbon, and PAHs in fine particulate matter (PM2.5) were analyzed in a village near the asphalt mix plant. The results of wind direction analysis revealed that the village was meteorologically affected by emissions from the asphalt mix plant. PAHs in PM2.5 ranged from 0.51 to 60.73 ng/m3, with an average of 11.54 ng/m3. Seasonal PAHs were highest in winter, followed in order by spring, autumn, and summer. The diagnostic ratios between PAHs indicate that the source of PAHs could be incomplete combustion of petrogenic origin. The maximum black carbon concentration in the intensive periods reaches up to 14.17 μg/m3 during mix plant operation periods. Seasonal ∑BaPTEF values based on Toxic Equivalence Factor were: winter (2.284 ng/m3), spring (0.575 ng/m3), autumn (0.550 ng/m3), and summer (0.176 ng/m3). The values are about 6.5 times higher than the concentration in another background area and more than three times higher than those in the capital city, Seoul, in the Republic of Korea. In conclusion, primary emissions from the point source can be considered the major contributor to pollution in the residential area.


Sign in / Sign up

Export Citation Format

Share Document