Transition from n- to p-type electrical conductivity induced by ethanol adsorption on α-tellurium dioxide nanowires

2009 ◽  
Vol 138 (1) ◽  
pp. 207-213 ◽  
Author(s):  
T. Siciliano ◽  
A. Tepore ◽  
G. Micocci ◽  
A. Genga ◽  
M. Siciliano ◽  
...  
2018 ◽  
Vol 31 (3) ◽  
pp. 20
Author(s):  
Sarmad M. M. Ali ◽  
Alia A.A. Shehab ◽  
Samir A. Maki

In this study, the ZnTe thin films were deposited on a glass substrate at a thickness of 400nm using vacuum evaporation technique (2×10-5mbar) at RT. Electrical conductivity and Hall effect measurements have been investigated as a function of variation of the doping ratios (3,5,7%) of the Cu element on the thin ZnTe films. The temperature range of (25-200°C) is to record the electrical conductivity values. The results of the films have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), expect 3% Cu. The activation energy (Ea1) increased from 29meV to 157meV before and after doping (Cu at 5%) respectively. The results of Hall effect measurements of ZnTe , ZnTe:Cu films show that all films were (p-type), the carrier concentration (1.1×1020 m-3) , Hall mobility (0.464m2/V.s) for pure ZnTe film, increases the carrier concentration (6.3×1021m-3) Hall mobility (2m2/V.s) for doping (Cu at 3%) film, but  decreases by increasing Cu concentration.


2001 ◽  
Vol 666 ◽  
Author(s):  
Kazushige Ueda ◽  
Shin-ichiro Inoue ◽  
Sakyo Hirose ◽  
Hiroshi Kawazoe ◽  
Hideo Hosono

ABSTRACTMaterials design for transparent p-type conducting oxides was extended to oxysulfide system. LaCuOS was selected as a candidate for a transparent p-type semiconductor. It was found that the electrical conductivity of LaCuOS was p-type and controllable from semiconducting to semi-metallic states by substituting Sr2+ for La3+. LaCuOS films showed high transparency in the visible region, and the bandgap estimated was approximately 3.1 eV. Moreover, it was revealed that LaCuOS showed sharp excitonic absorption and emission at the bandgap edge, which is advantageous for optical applications. A layered oxysulfide, LaCuOS, was proposed to be a promising material for optoelectronic devices.


1987 ◽  
Vol 97 ◽  
Author(s):  
C. Wood ◽  
D. Emin ◽  
R. S. Feigelson ◽  
I. D. R. Mackinnon

ABSTRACTMeasurements of the electrical conductivity, Seebeck coefficient and Hall mobility from -300 K to -1300 K have been carried out on multiphase hotpressed samples of the nominal composition B6Si. In all samples the conductivity and the p-type Seebeck coefficient both increase smoothly with increasing temperature. By themselves, these facts suggest small-polaronic hopping between inequivalent sites. The measured Hall mobilities are always low, but vary in sign. A possible explanation is offered for this anomalous behavior.


2015 ◽  
Vol 1770 ◽  
pp. 25-30 ◽  
Author(s):  
V.C. Lopes ◽  
A.J. Syllaios ◽  
D. Whitfield ◽  
K. Shrestha ◽  
C.L. Littler

ABSTRACTWe report on electrical conductivity and noise measurements made on p-type hydrogenated amorphous silicon (a-Si:H) thin films prepared by Plasma Enhanced Chemical Vapor Deposition (PECVD). The temperature dependent electrical conductivity can be described by the Mott Variable Range Hopping mechanism. The noise at temperatures lower than ∼ 400K is dominated by a 1/f component which follows the Hooge model and correlates with the Mott conductivity. At high temperatures there is an appreciable G-R noise component.


2013 ◽  
Vol 06 (05) ◽  
pp. 1340008 ◽  
Author(s):  
DALE HITCHCOCK ◽  
YEN-LIANG LIU ◽  
YUFEI LIU ◽  
TERRY M. TRITT ◽  
JIAN HE ◽  
...  

Over the past decade the widely used p-type ( Bi 2-x Sb x) Te 3 bulk thermoelectric materials have been subject to various nanostructuring processes for higher thermoelectric performance. However, these nanostructuring processing were conducted on compositions optimized for bulk materials (x ~ 1.52–1.55). This leads to the question of whether the optimal composition for bulk materials is the same for their nanoscale counterparts. In this work we hydrothermally grew Bi 2-x Sb x Te 3 nanopowders (nominally, x = 1.46, 1.48, 1.52 and 1.55) and measured their thermoelectric properties on cold-pressed vacuum-sintered pellets (74–78% of the theoretical density) below 300 K. The measurements were conducted 18 months apart to probe the aging phenomena, with the samples stored in ambient conditions. We have found that (i) the peak of thermopower shifts to lower temperatures upon nanostructuring but it shifts back to higher temperatures upon aging; (ii) the electrical conductivity degrades by a factor of 1.5–2.3 upon aging while the temperature dependence is largely retained; and (iii) the ZT of freshly made samples is sensitive to the x value, a maximum ZT ~ 1.25(~ 0.62) at ~ 270 K (~ 255 K) was attained in the freshly made sample x = 1.55(x = 1.46), respectively; while the ZT of aged samples is significantly lowered by a factor of 2–4 but lesser x-dependent. These observations have been discussed in the context of charge buildup and compensation at grain boundaries.


RSC Advances ◽  
2017 ◽  
Vol 7 (65) ◽  
pp. 41111-41116 ◽  
Author(s):  
Zichen Wei ◽  
Chenyang Wang ◽  
Li You ◽  
Shijie Zhao ◽  
Kang Yang ◽  
...  

Increased electrical conductivity and decreased thermal conductivity were achieved simultaneously in the Cu-doped Bi0.5Sb1.5Te3 synthesized by a hydrothermal method.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
A. A. Faremi ◽  
S. S. Oluyamo ◽  
O. Olubosede ◽  
I. O. Olusola ◽  
M. A. Adekoya ◽  
...  

Abstract In this paper, energy band gaps and electrical conductivity based on aluminum selenide (Al2Se3) thin films are synthesized electrochemically using cathodic deposition technique, with graphite and carbon as cathode and anode, respectively. Synthesis is done at 353 K from an aqueous solution of analytical grade selenium dioxide (SeO2), and aluminum chloride (AlCl2·7H2O). Junctions-based Al2Se3 thin films from a controlled medium of pH 2.0 are deposited on fluorine-doped tin oxide (FTO) substrate using potential voltages varying from 1,000 mV to 1,400 mV and 3 minutes −15 minutes respectively. The films were characterized for optical properties and electrical conductivity using UV-vis and photoelectrochemical cells (PEC) spectroscopy. The PEC reveals a transition in the conduction of the films from p-type to n-type as the potential voltage varies. The energy band gap reduces from 3.2 eV to 2.9 eV with an increase in voltage and 3.3 eV to 2.7 eV with increase in time. These variations indicate successful fabrication of junction-based Al2Se3 thin films with noticeable transition in the conductivity type and energy band gap of the materials. Consequently, the fabricated Al2Se3 can find useful applications in optoelectronic devices.


Author(s):  
А.А. Шабалдин ◽  
П.П. Константинов ◽  
Д.А. Курдюков ◽  
Л.Н. Лукьянова ◽  
А.Ю. Самунин ◽  
...  

AbstractNanocomposite thermoelectrics based on Bi_0.45Sb_1.55Te_2.985 solid solution of p -type conductivity are fabricated by the hot pressing of nanopowders of this solid solution with the addition of SiO_2 microparticles. Investigations of the thermoelectric properties show that the thermoelectric power of the nanocomposites increases in a wide temperature range of 80–420 K, while the thermal conductivity considerably decreases at 80–320 K, which, despite a decrease in the electrical conductivity, leads to an increase in the thermoelectric efficiency in the nanostructured material without the SiO_2 addition by almost 50% (at 300 K). When adding SiO_2, the efficiency decreases. The initial thermoelectric fabricated without nanostructuring, in which the maximal thermoelectric figure of merit ZT = 1 at 390 K, is most efficient at temperatures above 350 K.


1957 ◽  
Vol 35 (1) ◽  
pp. 91-97 ◽  
Author(s):  
J. S. Blakemore

Electrical conductivity and Hall effect are measured for p-type specimens of polycrystalline GaSb.InSb with impurity concentration about 1017 cm.−3. Analysis of these data suggests that μn/μp = 11, and that the intrinsic gap varies linearly with temperature from 0.265 ev. at 0° K. Measurement of the photoconductive limit at various temperatures shows that the gap widens on heating, though the electrical data seem difficult to reconcile with the large gradient of +1.1 × 10−3 ev./°C. indicated by the optical data.


Sign in / Sign up

Export Citation Format

Share Document