Analytical modeling and simulation of multigate FinFET devices and the impact of high-k dielectrics on short channel effects (SCEs)

2015 ◽  
Vol 85 ◽  
pp. 357-369 ◽  
Author(s):  
Vadthiya Narendar ◽  
R.A. Mishra
2007 ◽  
Vol 54 (8) ◽  
pp. 1943-1952 ◽  
Author(s):  
A. Tsormpatzoglou ◽  
C.A. Dimitriadis ◽  
R. Clerc ◽  
Q. Rafhay ◽  
G. Pananakakis ◽  
...  

2012 ◽  
Vol 67 (6-7) ◽  
pp. 317-326 ◽  
Author(s):  
Alireza Heidari ◽  
Niloofar Heidari ◽  
Foad Khademi Jahromi ◽  
Roozbeh Amiri ◽  
Mohammadali Ghorbani

In this paper, first, the impact of different gate arrangements on the short-channel effects of carbon nanotube field-effect transistors with doped source and drain with the self-consistent solution of the three-dimensional Poisson equation and the Schr¨odinger equation with open boundary conditions, within the non-equilibrium Green function, is investigated. The results indicate that the double-gate structure possesses a quasi-ideal subthreshold oscillation and an acceptable decrease in the drain induced barrier even for a relatively thick gate oxide (5 nm). Afterward, the electrical characteristics of the double-gate carbon nanotube field-effect transistors (DG-CNTFET) are investigated. The results demonstrate that an increase in diameter and density of the nanotubes in the DG-CNTFET increases the on-state current. Also, as the drain voltage increases, the off-state current of the DG-CNTFET decreases. In addition, regarding the negative gate voltages, for a high drain voltage, increasing in the drain current due to band-to-band tunnelling requires a larger negative gate voltage, and for a low drain voltage, resonant states appear


1995 ◽  
Vol 34 (Part 1, No. 2B) ◽  
pp. 822-826 ◽  
Author(s):  
Hans-Oliver Joachim ◽  
Yasuo Yamaguchi ◽  
Yasuo Inoue ◽  
Natsuro Tsubouchi

Author(s):  
Mohammed Khaouani ◽  
Ahlam Guen-Bouazza

<p>Square gate all around MOSFETs are a very promising device structures allowing to continue scaling due to their superior control over the short channel effects. In this work a numerical study of a square structure with single channel is compared to a structure with 4 channels in order to highlight the impact of channels number<em> </em>on the device’s DC parameters (drain current and threshold voltage). Our single channel rectangular GAA MOSFET showed reasonable ratio Ion/Ioff of 10<sup>4</sup>, while our four channels GAA MOSFET showed a value of 10<sup>3</sup>. In addition, a low value of drain induced barrier lowering<em> (DIBL) of </em>60mV/V was obtained for our single channel GAA and a lower value of with 40mv/v has been obtained for our four channel one. Also, an extrinsic transconductance of 88ms/µm have been obtained for our four channels GAA compared to the single channel that is equal to 7ms/µm.</p>


Author(s):  
Sarvesh Dubey ◽  
Rahul Mishra

The present paper deals with the analytical modeling of subthreshold characteristics of short-channel fully-depleted recessed-source/drain SOI MOSFET with back-gate control. The variations in the subthreshold current and subthreshold swing have been analyzed against the back-gate bias voltage, buried-oxide (BOX) thickness and recessed source/drain thickness to assess the severity of short-channel effects in the device. The model results are validated by simulation data obtained from two-dimensional device simulator ATLAS from Silvaco.


Sign in / Sign up

Export Citation Format

Share Document